
The unit of permittivity of free space, $\varepsilon \circ $ is
(A) $\mathop {coulomb/newton - metre}\nolimits^{} $
(B) $\mathop {newton - metre}\nolimits^2 /\mathop {coulomb}\nolimits^2 $
(C) $\mathop {\mathop {coulomb}\nolimits^2 /newton}\nolimits^{} - \mathop {metre}\nolimits^2 $
(D) $\mathop {\mathop {coulomb}\nolimits^2 /(newton - \mathop {metre)}\nolimits^{} }\nolimits^2 $
Answer
217.8k+ views
Hint: permittivity of resistance to the electric field. Generally, permittivity of free space is represented by Farad/meter. Here the options are in the terms of charge, force and length. To find that unit, we can use coulomb’s law. Coulomb’s law can be written as $F = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \in \circ \mathop r\nolimits^2 }}$ , where $\mathop q\nolimits_1 and\mathop q\nolimits_2 $are two charges and r is the distance between two charges.
Complete step by step solution
Permittivity is a property of a material that can tell about the resistance of a material against the formation of an electric field. It is defined as the amount of charge required for the generation of one unit of electric flux in a specific medium. It depends upon the property of the medium. Generally, a charge will yield more electric flux in a low permittivity medium than the high permittivity medium.
Permittivity of the vacuum of free space is the lowest possible permittivity. It is treated as a physical constant and it is known as an electric constant. It has a value of $\mathop {8.85 \times 10}\nolimits^{ - 12} Farad/meter$
According to coulomb’s law, the force between two charges can be written as,
$F = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \in \circ \mathop r\nolimits^2 }}$ , where $\mathop q\nolimits_1 and\mathop q\nolimits_2 $are two charges and r is the distance between two charges.
We can alter this equation to find the electric constant or permittivity of free space.
$ \in \circ = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \mathop {Fr}\nolimits^2 }}$
To find the SI unit of permittivity of free space, we can substitute all the SI units of given quantities of the above equation.
$ \Rightarrow \dfrac{{C.C}}{{\mathop {N.m}\nolimits^2 }}$
$ \Rightarrow \mathop C\nolimits^2 \mathop N\nolimits^{ - 1} \mathop m\nolimits^{ - 2} $
So, the correct option is D.
Note: Permittivity is actually the measurement of resistance to an electric field. Don’t confuse it with that name. it doesn’t mean the ability to permit. Relative permittivity is a ratio of permittivity of a medium to the permittivity of free space. Hence it doesn’t have units.
Complete step by step solution
Permittivity is a property of a material that can tell about the resistance of a material against the formation of an electric field. It is defined as the amount of charge required for the generation of one unit of electric flux in a specific medium. It depends upon the property of the medium. Generally, a charge will yield more electric flux in a low permittivity medium than the high permittivity medium.
Permittivity of the vacuum of free space is the lowest possible permittivity. It is treated as a physical constant and it is known as an electric constant. It has a value of $\mathop {8.85 \times 10}\nolimits^{ - 12} Farad/meter$
According to coulomb’s law, the force between two charges can be written as,
$F = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \in \circ \mathop r\nolimits^2 }}$ , where $\mathop q\nolimits_1 and\mathop q\nolimits_2 $are two charges and r is the distance between two charges.
We can alter this equation to find the electric constant or permittivity of free space.
$ \in \circ = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \mathop {Fr}\nolimits^2 }}$
To find the SI unit of permittivity of free space, we can substitute all the SI units of given quantities of the above equation.
$ \Rightarrow \dfrac{{C.C}}{{\mathop {N.m}\nolimits^2 }}$
$ \Rightarrow \mathop C\nolimits^2 \mathop N\nolimits^{ - 1} \mathop m\nolimits^{ - 2} $
So, the correct option is D.
Note: Permittivity is actually the measurement of resistance to an electric field. Don’t confuse it with that name. it doesn’t mean the ability to permit. Relative permittivity is a ratio of permittivity of a medium to the permittivity of free space. Hence it doesn’t have units.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

