
The sum of the series \[3 \cdot 6\, + \,4 \cdot 7\, + 5 \cdot 8\, + ....\] upto \[\left( {n - 2} \right)\]terms
A. \[{n^3} + {n^2} + n + 2\]
B. \[\left( {\dfrac{1}{6}} \right)\left( {2{n^3} + 12{n^2} + 10n - 84} \right)\]
C. \[{n^3} + {n^2} + n\]
D. none of these
Answer
232.8k+ views
Hint: In this question, first we consider the given series as two factors in which both are in AP. Now we have to find the nth term of both the factors and then calculate the sum of the series.
Formula used:
1. \[{a_n} = a + \left( {n - 1} \right)d\]
2. \[\sum {{n^2} = \dfrac{{n\,\left( {n - 1} \right)\,\,\left( {2n + 1} \right)}}{6}} \]
3. \[\sum {n\, = \dfrac{{n\,\left( {n + 1} \right)}}{2}} \]
Complete step-by-step solution:
Given series is \[3 \cdot 6 + 4 \cdot 7 + 5 \cdot 8.....\]
It has two factors the first factor is \[3,4,5...\] which has a common difference \[d = 1\]
Now we find the \[{n_{th}}\] term by the formula \[{a_n} = a + \left( {n - 1} \right)d\]:
\[
{a_n} = 3 + \left( {n - 1} \right) \cdot 1 \\
= 3 + \left( {n - 1} \right) \\
= n + 2 \\
\]
Now the second factor is \[6,7,8,...\] which has a common difference \[d = 1\]
Now we find the \[{n_{th}}\] term by the formula \[{a_n} = a + \left( {n - 1} \right)d\]:
\[
{a_n} = 6 + \left( {n - 1} \right) \cdot 1 \\
= 6 + \left( {n - 1} \right) \\
= n + 5 \\
\]
Thus, the \[{n_{th}}\]term of the given series is \[{a_n} = \left( {n + 2} \right)\left( {n + 5} \right)\]
Therefore, the sum of the \[{n_{th}}\] term of the given series is \[{S_n} = \sum\limits_{n = 1}^{n - 2} {\left( {n + 2} \right)\,\left( {n + 5} \right)} \]
By multiplying \[\left( {n + 2} \right)\] by \[\left( {n + 5} \right)\] we obtain:
\[
{S_n} = \sum\limits_{n = 1}^{n - 2} {\,n\,} \left( {n + 5} \right) + \,2\left( {n + 5} \right) \\
= \sum\limits_{n = 1}^{n - 2} {\,{n^2} + 5n\, + 2n\, + 10} \\
= \sum\limits_{n = 1}^{n - 2} {{n^2} + 7n + 10} \\
\]
By splitting the terms, we get
\[
{S_n} = \sum\limits_{n = 1}^{n - 2} {{n^2} + } \,\sum\limits_{n = 1}^{n - 2} {\,7n\, + \sum\limits_{n = 1}^{n - 2} {\,10} } \\
= \sum\limits_{n = 1}^{n - 2} {{n^2} + } \,7\,\,\sum\limits_{n = 1}^{n - 2} {\,n\, + \sum\limits_{n = 1}^{n - 2} {\,10} } \,\,...\left( 1 \right) \\
\]
We know that sum of squares of first n natural numbers is given by \[\sum {{n^2} = \dfrac{{n\,\left( {n + 1} \right)\,\,\left( {2n + 1} \right)}}{6}} \] and the sum of the first n natural number is given by \[\sum {n\, = \dfrac{{n\,\left( {n + 1} \right)}}{2}} \]
So, \[{S_n} = \dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)\,\,\left( {2\left( {n - 2} \right) + 1} \right)}}{6} + 7\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2} + 10\left( {n - 2} \right)\]
Now by simplifying the above equation, we get
\[
{S_n} = \dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)\,\,\left( {2n - 4 + 1} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
= \dfrac{{\left( {n - 2} \right)\left( {n - 1} \right)\left( {2n - 3} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
= \dfrac{{\left( {n - 2} \right)\left( {2{n^2} - 3n - 2n + 3} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
= \dfrac{{\left( {n - 2} \right)\left( {2{n^2} - 5n + 3} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
\]
Further solving we get,
\[
{S_n} = \left( {n - 2} \right)\left[ {\dfrac{{2{n^2} - 5n + 3}}{6} + \dfrac{{7\left( {n - 1} \right)}}{2} + 10} \right] \\
= \left( {n - 2} \right)\left[ {\dfrac{{2{n^2} - 5n + 3 + 21n - 21 + 60}}{6}} \right] \\
= \left( {n - 2} \right)\left[ {\dfrac{{2{n^2} + 16n + 42}}{6}} \right] \\
= \left( {\dfrac{1}{6}} \right)\left( {2{n^3} + 16{n^2} + 42n - 4{n^2} - 32n - 84} \right) \\
\]
Therefore, the sum of series is \[\left( {\dfrac{1}{6}} \right)\left( {2{n^3} + 12{n^2} + 10n - 84} \right)\]
Hence, option(B) is correct
Note: Because there are n terms, students must take the summation when calculating the sum. There are 'n-2' in the terms, and the summation must take its limit from 1 to n-2. You should also be able to calculate the sum of the first n natural numbers and the sum of the squares of the first n natural numbers.
Formula used:
1. \[{a_n} = a + \left( {n - 1} \right)d\]
2. \[\sum {{n^2} = \dfrac{{n\,\left( {n - 1} \right)\,\,\left( {2n + 1} \right)}}{6}} \]
3. \[\sum {n\, = \dfrac{{n\,\left( {n + 1} \right)}}{2}} \]
Complete step-by-step solution:
Given series is \[3 \cdot 6 + 4 \cdot 7 + 5 \cdot 8.....\]
It has two factors the first factor is \[3,4,5...\] which has a common difference \[d = 1\]
Now we find the \[{n_{th}}\] term by the formula \[{a_n} = a + \left( {n - 1} \right)d\]:
\[
{a_n} = 3 + \left( {n - 1} \right) \cdot 1 \\
= 3 + \left( {n - 1} \right) \\
= n + 2 \\
\]
Now the second factor is \[6,7,8,...\] which has a common difference \[d = 1\]
Now we find the \[{n_{th}}\] term by the formula \[{a_n} = a + \left( {n - 1} \right)d\]:
\[
{a_n} = 6 + \left( {n - 1} \right) \cdot 1 \\
= 6 + \left( {n - 1} \right) \\
= n + 5 \\
\]
Thus, the \[{n_{th}}\]term of the given series is \[{a_n} = \left( {n + 2} \right)\left( {n + 5} \right)\]
Therefore, the sum of the \[{n_{th}}\] term of the given series is \[{S_n} = \sum\limits_{n = 1}^{n - 2} {\left( {n + 2} \right)\,\left( {n + 5} \right)} \]
By multiplying \[\left( {n + 2} \right)\] by \[\left( {n + 5} \right)\] we obtain:
\[
{S_n} = \sum\limits_{n = 1}^{n - 2} {\,n\,} \left( {n + 5} \right) + \,2\left( {n + 5} \right) \\
= \sum\limits_{n = 1}^{n - 2} {\,{n^2} + 5n\, + 2n\, + 10} \\
= \sum\limits_{n = 1}^{n - 2} {{n^2} + 7n + 10} \\
\]
By splitting the terms, we get
\[
{S_n} = \sum\limits_{n = 1}^{n - 2} {{n^2} + } \,\sum\limits_{n = 1}^{n - 2} {\,7n\, + \sum\limits_{n = 1}^{n - 2} {\,10} } \\
= \sum\limits_{n = 1}^{n - 2} {{n^2} + } \,7\,\,\sum\limits_{n = 1}^{n - 2} {\,n\, + \sum\limits_{n = 1}^{n - 2} {\,10} } \,\,...\left( 1 \right) \\
\]
We know that sum of squares of first n natural numbers is given by \[\sum {{n^2} = \dfrac{{n\,\left( {n + 1} \right)\,\,\left( {2n + 1} \right)}}{6}} \] and the sum of the first n natural number is given by \[\sum {n\, = \dfrac{{n\,\left( {n + 1} \right)}}{2}} \]
So, \[{S_n} = \dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)\,\,\left( {2\left( {n - 2} \right) + 1} \right)}}{6} + 7\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2} + 10\left( {n - 2} \right)\]
Now by simplifying the above equation, we get
\[
{S_n} = \dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)\,\,\left( {2n - 4 + 1} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
= \dfrac{{\left( {n - 2} \right)\left( {n - 1} \right)\left( {2n - 3} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
= \dfrac{{\left( {n - 2} \right)\left( {2{n^2} - 3n - 2n + 3} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
= \dfrac{{\left( {n - 2} \right)\left( {2{n^2} - 5n + 3} \right)}}{6} + 7\left( {\dfrac{{\left( {n - 2} \right)\,\left( {n - 1} \right)}}{2}} \right) + 10\left( {n - 2} \right) \\
\]
Further solving we get,
\[
{S_n} = \left( {n - 2} \right)\left[ {\dfrac{{2{n^2} - 5n + 3}}{6} + \dfrac{{7\left( {n - 1} \right)}}{2} + 10} \right] \\
= \left( {n - 2} \right)\left[ {\dfrac{{2{n^2} - 5n + 3 + 21n - 21 + 60}}{6}} \right] \\
= \left( {n - 2} \right)\left[ {\dfrac{{2{n^2} + 16n + 42}}{6}} \right] \\
= \left( {\dfrac{1}{6}} \right)\left( {2{n^3} + 16{n^2} + 42n - 4{n^2} - 32n - 84} \right) \\
\]
Therefore, the sum of series is \[\left( {\dfrac{1}{6}} \right)\left( {2{n^3} + 12{n^2} + 10n - 84} \right)\]
Hence, option(B) is correct
Note: Because there are n terms, students must take the summation when calculating the sum. There are 'n-2' in the terms, and the summation must take its limit from 1 to n-2. You should also be able to calculate the sum of the first n natural numbers and the sum of the squares of the first n natural numbers.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

