
The sum of the infinite series $1 + \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{7}{{{3^2}}}} \right) + \left( {\dfrac{{12}}{{{3^3}}}} \right) + \left( {\dfrac{{17}}{{{3^4}}}} \right) + \left( {\dfrac{{22}}{{{3^5}}}} \right) + ........$ is equal to
1. $\dfrac{9}{4}$
2. $\dfrac{{15}}{4}$
3. $\dfrac{{13}}{4}$
4. $\dfrac{{11}}{4}$
Answer
233.1k+ views
Hint: In this question, an infinity series $1 + \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{7}{{{3^2}}}} \right) + \left( {\dfrac{{12}}{{{3^3}}}} \right) + \left( {\dfrac{{17}}{{{3^4}}}} \right) + \left( {\dfrac{{22}}{{{3^5}}}} \right) + ........$ is given. First, divide the series by $3$then subtract both the equations. Solve further, while solving you’ll get the infinite G.P. Series and use the formula of sum of infinite terms of G.P..
Formula used:
Sum of infinite terms of G.P. –
$S = a + ar + a{r^2} + a{r^3} + - - - - - + \infty $
$S = \dfrac{a}{{1 - r}}$
Complete step by step solution:
Given that,
$S = 1 + \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{7}{{{3^2}}}} \right) + \left( {\dfrac{{12}}{{{3^3}}}} \right) + \left( {\dfrac{{17}}{{{3^4}}}} \right) + \left( {\dfrac{{22}}{{{3^5}}}} \right) + ........ + \infty - - - - - \left( 1 \right)$
Divide above equation by $3$,
$\dfrac{S}{3} = \left( {\dfrac{1}{3}} \right) + \left( {\dfrac{2}{{{3^2}}}} \right) + \left( {\dfrac{7}{{{3^3}}}} \right) + \left( {\dfrac{{12}}{{{3^4}}}} \right) + \left( {\dfrac{{17}}{{{3^5}}}} \right) + \left( {\dfrac{{22}}{{{3^6}}}} \right) + ........ + \infty - - - - - \left( 2 \right)$
Subtract equation (1) and (2)
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{3^3}}} + - - - - - - + \infty $
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{1}{3} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^3}}} + \dfrac{1}{{{3^4}}} + - - - - - - + \infty } \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{{\left( {\dfrac{1}{3}} \right)}}{{1 - \left( {\dfrac{1}{3}} \right)}}} \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{1}{3} \times \dfrac{3}{2}} \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{6}$
$\dfrac{{2S}}{3} = \dfrac{{13}}{6}$
$S = \dfrac{{13}}{4}$
Hence, Option (3) is the correct answer.
Note: The key concept involved in solving this problem is the good knowledge of Series and sequence. Students must know whether the series is in A.P. or G.P.. For infinite and finite series formulas are changed. So, apply carefully.
Formula used:
Sum of infinite terms of G.P. –
$S = a + ar + a{r^2} + a{r^3} + - - - - - + \infty $
$S = \dfrac{a}{{1 - r}}$
Complete step by step solution:
Given that,
$S = 1 + \left( {\dfrac{2}{3}} \right) + \left( {\dfrac{7}{{{3^2}}}} \right) + \left( {\dfrac{{12}}{{{3^3}}}} \right) + \left( {\dfrac{{17}}{{{3^4}}}} \right) + \left( {\dfrac{{22}}{{{3^5}}}} \right) + ........ + \infty - - - - - \left( 1 \right)$
Divide above equation by $3$,
$\dfrac{S}{3} = \left( {\dfrac{1}{3}} \right) + \left( {\dfrac{2}{{{3^2}}}} \right) + \left( {\dfrac{7}{{{3^3}}}} \right) + \left( {\dfrac{{12}}{{{3^4}}}} \right) + \left( {\dfrac{{17}}{{{3^5}}}} \right) + \left( {\dfrac{{22}}{{{3^6}}}} \right) + ........ + \infty - - - - - \left( 2 \right)$
Subtract equation (1) and (2)
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{{{3^2}}} + \dfrac{5}{{{3^3}}} + - - - - - - + \infty $
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{1}{3} + \dfrac{1}{{{3^2}}} + \dfrac{1}{{{3^3}}} + \dfrac{1}{{{3^4}}} + - - - - - - + \infty } \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{{\left( {\dfrac{1}{3}} \right)}}{{1 - \left( {\dfrac{1}{3}} \right)}}} \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{3}\left( {\dfrac{1}{3} \times \dfrac{3}{2}} \right)$
$\dfrac{{2S}}{3} = 1 + \dfrac{1}{3} + \dfrac{5}{6}$
$\dfrac{{2S}}{3} = \dfrac{{13}}{6}$
$S = \dfrac{{13}}{4}$
Hence, Option (3) is the correct answer.
Note: The key concept involved in solving this problem is the good knowledge of Series and sequence. Students must know whether the series is in A.P. or G.P.. For infinite and finite series formulas are changed. So, apply carefully.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

