
The sum of the digits in the unit place of all the numbers formed with the help of 3, 4, 5, 6 taken all at a time is:
A. 432
B. 108
C. 36
D. 18
Answer
600.6k+ views
Hint: Form four numbers in such a way that their unit place is 3, 4, 5, 6. Then take the sum of digits in their unit place when it is 3, 4, 5, 6. Take the sum of the four cases.
Complete step-by-step answer:
Given to us are four numbers 3, 4, 5, 6. Thus we need to find the sum of the digits in the unit place of all numbers formed with help of 3, 4, 5, 6.
Thus we need to get four numbers formed 3, 4, 5, 6, and we need to take the sum of unit digits of the number, i.e. \[\underline{{}}\underline{{}}\underline{{}}\underline{x}\].
Now the given 4 digits- 3, 4, 5, 6- have to be used in every number.
Now let us form the four digit number. Let us first place 3 in the unit’s place, i.e. \[\underline{{}}\underline{{}}\underline{{}}\underline{3}\].
The other places can be filled by 4, 5, 6 in 3! ways.
Thus total ways of forming the number with 3 in unit’s place \[=3\times 3!\] ways \[.....(1)\]
Similarly, let us place the digit 4 in the unit’s place, i.e. \[\underline{{}}\underline{{}}\underline{{}}\underline{4}\].
Now the other 3 places can be filled by 3, 5, 6 in 3! ways.
\[\therefore \]Total ways of forming the number with 4 in its units place \[=3!\times 4\] ways \[......(2)\]
Now let us place digit 5 in the units place, i.e. \[\underline{{}}\underline{{}}\underline{{}}\underline{5}\].
\[\therefore \]Total ways of forming the number with 5 in its units place \[=3!\times 5\] ways \[......(3)\]
Let us place digit 6 in the units place, i.e. \[\underline{{}}\underline{{}}\underline{{}}\underline{6}\].
\[\therefore \]Total ways of forming the number with 6 in its units place \[=3!\times 6\] ways \[......(4)\]
\[\therefore \]The sum of digits in unit place when 3 is at their unit place \[=3\times 3!\]
Similarly, when unit place is 4 \[=3!\times 4\]
when unit place is 5 \[=3!\times 5\]
when unit place is 6 \[=3!\times 6\]
Now let us take the sum of equation (1), (2), (3) and (4).
\[\therefore \]The sum of the digits in the unit place of all the numbers formed with the help of 3, 4, 5, 6 taken all at a time is
\[\begin{align}
& =\left( 3!\times 3 \right)+\left( 3!\times 4 \right)+\left( 3!\times 5 \right)+\left( 3!\times 6 \right) \\
& =3!\left( 3+4+5+6 \right) \\
& =3\times 2\times 18=108. \\
\end{align}\]
\[\therefore \]The sum of digits in the unit place of all numbers formed with the help of 3, 4, 5, 6 taken all at a time is 108.
Option B is the correct answer.
Note: We have been given 4 digits 3, 4, 5, 6. It is said that we have to form numbers with the help of these digits. Nothing about repetition or using some numbers twice and all is mentioned. Thus to form the required number you need to take all the 4 digits in all the four cases like equation (1), (2), (3), (4), which we have discussed.
Complete step-by-step answer:
Given to us are four numbers 3, 4, 5, 6. Thus we need to find the sum of the digits in the unit place of all numbers formed with help of 3, 4, 5, 6.
Thus we need to get four numbers formed 3, 4, 5, 6, and we need to take the sum of unit digits of the number, i.e. \[\underline{{}}\underline{{}}\underline{{}}\underline{x}\].
Now the given 4 digits- 3, 4, 5, 6- have to be used in every number.
Now let us form the four digit number. Let us first place 3 in the unit’s place, i.e. \[\underline{{}}\underline{{}}\underline{{}}\underline{3}\].
The other places can be filled by 4, 5, 6 in 3! ways.
Thus total ways of forming the number with 3 in unit’s place \[=3\times 3!\] ways \[.....(1)\]
Similarly, let us place the digit 4 in the unit’s place, i.e. \[\underline{{}}\underline{{}}\underline{{}}\underline{4}\].
Now the other 3 places can be filled by 3, 5, 6 in 3! ways.
\[\therefore \]Total ways of forming the number with 4 in its units place \[=3!\times 4\] ways \[......(2)\]
Now let us place digit 5 in the units place, i.e. \[\underline{{}}\underline{{}}\underline{{}}\underline{5}\].
\[\therefore \]Total ways of forming the number with 5 in its units place \[=3!\times 5\] ways \[......(3)\]
Let us place digit 6 in the units place, i.e. \[\underline{{}}\underline{{}}\underline{{}}\underline{6}\].
\[\therefore \]Total ways of forming the number with 6 in its units place \[=3!\times 6\] ways \[......(4)\]
\[\therefore \]The sum of digits in unit place when 3 is at their unit place \[=3\times 3!\]
Similarly, when unit place is 4 \[=3!\times 4\]
when unit place is 5 \[=3!\times 5\]
when unit place is 6 \[=3!\times 6\]
Now let us take the sum of equation (1), (2), (3) and (4).
\[\therefore \]The sum of the digits in the unit place of all the numbers formed with the help of 3, 4, 5, 6 taken all at a time is
\[\begin{align}
& =\left( 3!\times 3 \right)+\left( 3!\times 4 \right)+\left( 3!\times 5 \right)+\left( 3!\times 6 \right) \\
& =3!\left( 3+4+5+6 \right) \\
& =3\times 2\times 18=108. \\
\end{align}\]
\[\therefore \]The sum of digits in the unit place of all numbers formed with the help of 3, 4, 5, 6 taken all at a time is 108.
Option B is the correct answer.
Note: We have been given 4 digits 3, 4, 5, 6. It is said that we have to form numbers with the help of these digits. Nothing about repetition or using some numbers twice and all is mentioned. Thus to form the required number you need to take all the 4 digits in all the four cases like equation (1), (2), (3), (4), which we have discussed.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

