
The sum of $\dfrac{{{1^2} \cdot 2}}{{1!}} + \dfrac{{{2^2} \cdot 3}}{{2!}} + \dfrac{{{3^2} \cdot 4}}{{3!}} + .....\infty $ is
A. $5e$
B. $3e$
C. $7e$
D. $2e$
Answer
233.1k+ views
Hint: The terms given in the series follows a pattern. Find the pattern and use it to find the $n$-th term of the given series. Then convert the fraction into a sum of partial fractions. Make a suitable arrangement for the given terms using the $n$-th term.
Formula Used:
Expansion of $e$ is $e = 1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....$
The factorial of $n$ is $n! = n\left( {n - 1} \right)!$
Complete step by step solution:
The given series is $\dfrac{{{1^2} \cdot 2}}{{1!}} + \dfrac{{{2^2} \cdot 3}}{{2!}} + \dfrac{{{3^2} \cdot 4}}{{3!}} + .....\infty $
Let us find the $n$-th term of the series.
The numerators of each term are products of two numbers and denominators are factorials.
The sequence of the first numbers of the numerators is ${1^2},{2^2},{3^2},.....$
So, the first number of the numerator of the $n$-th term is ${n^2}$.
The sequence of the second numbers of the numerators is $2,3,4,.....$
So, the second number of the numerator of the $n$-th term is $n + 1$.
The sequence of the denominators is $1!,2!,3!,.....$
So, the denominator of the $n$-th term is $n!$
Thus, the $n$-th term of the series is $\dfrac{{{n^2}\left( {n + 1} \right)}}{{n!}}$
Let ${T_n} = \dfrac{{{n^2}\left( {n + 1} \right)}}{{n!}}$
The factorial of $n$ is $n! = n\left( {n - 1} \right)!$
So, ${T_n} = \dfrac{{{n^2}\left( {n + 1} \right)}}{{n\left( {n - 1} \right)!}} = \dfrac{{n\left( {n + 1} \right)}}{{\left( {n - 1} \right)!}}$
Let us try to rewrite this fraction as a partial sum of fractions.
We can write $n\left( {n + 1} \right) = {n^2} + n = {n^2} + 2n - n - 2 + 2 = n\left( {n + 2} \right) - \left( {n + 2} \right) + 2 = \left( {n + 2} \right)\left( {n - 1} \right) + 2$
So, ${T_n} = \dfrac{{\left( {n + 2} \right)\left( {n - 1} \right) + 2}}{{\left( {n - 1} \right)\left( {n - 2} \right)!}}$
Separate the terms in the numerator.
${T_n} = \dfrac{{\left( {n + 2} \right)\left( {n - 1} \right) + 2}}{{\left( {n - 1} \right)\left( {n - 2} \right)!}} = \dfrac{{\left( {n + 2} \right)\left( {n - 1} \right)}}{{\left( {n - 1} \right)\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)\left( {n - 2} \right)!}} = \dfrac{{n + 2}}{{\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} - - - - - \left( i \right)$
Again, we can write $n + 2 = n - 2 + 4$
So, ${T_n} = \dfrac{{n - 2 + 4}}{{\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} = \dfrac{{n - 2}}{{\left( {n - 2} \right)\left( {n - 3} \right)!}} + \dfrac{4}{{\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} = \dfrac{1}{{\left( {n - 3} \right)!}} + \dfrac{4}{{\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} - - - - - \left( {ii} \right)$
The first term is ${T_1} = \dfrac{{{1^2} \cdot 2}}{{1!}} = \dfrac{2}{1} = 2$
Putting $n = 2$ in the expression $\left( i \right)$, we get the second term given by ${T_2} = \dfrac{4}{{0!}} + \dfrac{2}{{1!}} = 4 + \dfrac{2}{{1!}}$
Putting $n = 3$ in the expression $\left( {ii} \right)$, we get the third term given by ${T_3} = \dfrac{1}{{0!}} + \dfrac{4}{{1!}} + \dfrac{2}{{2!}} = 1 + \dfrac{4}{{1!}} + \dfrac{2}{{2!}}$
Putting $n = 4$ in the expression $\left( {ii} \right)$, we get the fourth term given by ${T_4} = \dfrac{1}{{1!}} + \dfrac{4}{{2!}} + \dfrac{2}{{3!}}$
Putting $n = 5$ in the expression $\left( {ii} \right)$, we get the fifth term given by ${T_5} = \dfrac{1}{{2!}} + \dfrac{4}{{3!}} + \dfrac{2}{{4!}}$
and so on.
Adding all the terms, we get
$ \Rightarrow \left( 2 \right) + \left( {4 + \dfrac{2}{{1!}}} \right) + \left( {1 + \dfrac{4}{{1!}} + \dfrac{2}{{2!}}} \right) + \left( {\dfrac{1}{{1!}} + \dfrac{4}{{2!}} + \dfrac{2}{{3!}}} \right) + \left( {\dfrac{1}{{2!}} + \dfrac{4}{{3!}} + \dfrac{2}{{4!}}} \right) + .......$
Arrange the terms
$ \Rightarrow \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....} \right) + 2\left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....} \right) + 4\left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....} \right)$
The series $\left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....} \right)$ is the expansion of $e$.
So, the required sum is $ e + 2e + 4e = 7e$
Option ‘C’ is correct
Note: Always remember to convert an expression as a sum of partial fractions. At then end you will find a special expansion $\left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....} \right)$, which is the expansion of $e$. Substitute $e = 1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....$ and obtain the required sum.
Formula Used:
Expansion of $e$ is $e = 1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....$
The factorial of $n$ is $n! = n\left( {n - 1} \right)!$
Complete step by step solution:
The given series is $\dfrac{{{1^2} \cdot 2}}{{1!}} + \dfrac{{{2^2} \cdot 3}}{{2!}} + \dfrac{{{3^2} \cdot 4}}{{3!}} + .....\infty $
Let us find the $n$-th term of the series.
The numerators of each term are products of two numbers and denominators are factorials.
The sequence of the first numbers of the numerators is ${1^2},{2^2},{3^2},.....$
So, the first number of the numerator of the $n$-th term is ${n^2}$.
The sequence of the second numbers of the numerators is $2,3,4,.....$
So, the second number of the numerator of the $n$-th term is $n + 1$.
The sequence of the denominators is $1!,2!,3!,.....$
So, the denominator of the $n$-th term is $n!$
Thus, the $n$-th term of the series is $\dfrac{{{n^2}\left( {n + 1} \right)}}{{n!}}$
Let ${T_n} = \dfrac{{{n^2}\left( {n + 1} \right)}}{{n!}}$
The factorial of $n$ is $n! = n\left( {n - 1} \right)!$
So, ${T_n} = \dfrac{{{n^2}\left( {n + 1} \right)}}{{n\left( {n - 1} \right)!}} = \dfrac{{n\left( {n + 1} \right)}}{{\left( {n - 1} \right)!}}$
Let us try to rewrite this fraction as a partial sum of fractions.
We can write $n\left( {n + 1} \right) = {n^2} + n = {n^2} + 2n - n - 2 + 2 = n\left( {n + 2} \right) - \left( {n + 2} \right) + 2 = \left( {n + 2} \right)\left( {n - 1} \right) + 2$
So, ${T_n} = \dfrac{{\left( {n + 2} \right)\left( {n - 1} \right) + 2}}{{\left( {n - 1} \right)\left( {n - 2} \right)!}}$
Separate the terms in the numerator.
${T_n} = \dfrac{{\left( {n + 2} \right)\left( {n - 1} \right) + 2}}{{\left( {n - 1} \right)\left( {n - 2} \right)!}} = \dfrac{{\left( {n + 2} \right)\left( {n - 1} \right)}}{{\left( {n - 1} \right)\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)\left( {n - 2} \right)!}} = \dfrac{{n + 2}}{{\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} - - - - - \left( i \right)$
Again, we can write $n + 2 = n - 2 + 4$
So, ${T_n} = \dfrac{{n - 2 + 4}}{{\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} = \dfrac{{n - 2}}{{\left( {n - 2} \right)\left( {n - 3} \right)!}} + \dfrac{4}{{\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} = \dfrac{1}{{\left( {n - 3} \right)!}} + \dfrac{4}{{\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} - - - - - \left( {ii} \right)$
The first term is ${T_1} = \dfrac{{{1^2} \cdot 2}}{{1!}} = \dfrac{2}{1} = 2$
Putting $n = 2$ in the expression $\left( i \right)$, we get the second term given by ${T_2} = \dfrac{4}{{0!}} + \dfrac{2}{{1!}} = 4 + \dfrac{2}{{1!}}$
Putting $n = 3$ in the expression $\left( {ii} \right)$, we get the third term given by ${T_3} = \dfrac{1}{{0!}} + \dfrac{4}{{1!}} + \dfrac{2}{{2!}} = 1 + \dfrac{4}{{1!}} + \dfrac{2}{{2!}}$
Putting $n = 4$ in the expression $\left( {ii} \right)$, we get the fourth term given by ${T_4} = \dfrac{1}{{1!}} + \dfrac{4}{{2!}} + \dfrac{2}{{3!}}$
Putting $n = 5$ in the expression $\left( {ii} \right)$, we get the fifth term given by ${T_5} = \dfrac{1}{{2!}} + \dfrac{4}{{3!}} + \dfrac{2}{{4!}}$
and so on.
Adding all the terms, we get
$ \Rightarrow \left( 2 \right) + \left( {4 + \dfrac{2}{{1!}}} \right) + \left( {1 + \dfrac{4}{{1!}} + \dfrac{2}{{2!}}} \right) + \left( {\dfrac{1}{{1!}} + \dfrac{4}{{2!}} + \dfrac{2}{{3!}}} \right) + \left( {\dfrac{1}{{2!}} + \dfrac{4}{{3!}} + \dfrac{2}{{4!}}} \right) + .......$
Arrange the terms
$ \Rightarrow \left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....} \right) + 2\left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....} \right) + 4\left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....} \right)$
The series $\left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....} \right)$ is the expansion of $e$.
So, the required sum is $ e + 2e + 4e = 7e$
Option ‘C’ is correct
Note: Always remember to convert an expression as a sum of partial fractions. At then end you will find a special expansion $\left( {1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....} \right)$, which is the expansion of $e$. Substitute $e = 1 + \dfrac{1}{{1!}} + \dfrac{1}{{2!}} + .....$ and obtain the required sum.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

Introduction to Three Dimensional Geometry Class 11 Maths Chapter 11 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

