
The smallest interval $[a,b]$ such that $\int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}\in [a,b]$ is given by
A. $\left[ \dfrac{1}{\sqrt{2}},1 \right]$
B. $[0,1]$
C. $\left[ \dfrac{1}{2},2 \right]$
D. $\left[ \dfrac{3}{4},1 \right]$
Answer
232.8k+ views
Hint: In this question, we are to find the smallest interval that satisfies the given integral. For this, the limits of the given integral are altered in such a way that we get the required smallest interval for the given integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$- upper limit.
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Consider the given integral as
$I=\int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}$
The given integral has the interval as $0\le x\le 1$
For the required integral, we can alter the interval as
$0\le x\le 1$
On squaring, we get
$\Rightarrow 0\le {{x}^{2}}\le 1$
Again, on squaring, we get
$\Rightarrow 0\le {{x}^{4}}\le 1$
Adding $1$ on both sides,
$\begin{align}
& \Rightarrow 1+0\le 1+{{x}^{4}}\le 1+1 \\
& \Rightarrow 1\le 1+{{x}^{4}}\le 2 \\
\end{align}$
Applying square root, we get
$\begin{align}
& \Rightarrow \sqrt{1}\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
\end{align}$
We need the required variable in the denominator. So, if the terms in inequality are inverted or reciprocated then the inequality gets changed. I.e.,
\[\begin{align}
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow \dfrac{1}{1}\ge \dfrac{1}{\sqrt{1+{{x}^{4}}}}\ge \dfrac{1}{\sqrt{2}} \\
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \dfrac{1}{\sqrt{1+{{x}^{4}}}}\le 1 \\
\end{align}\]
Thus, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}\le 1 \\
& \therefore I\in \left[ \dfrac{1}{\sqrt{2}},1 \right] \\
\end{align}$
Here the smallest interval is defined for an integral as
$m(b-a)\le \int\limits_{a}^{b}{f(x)dx\le M(b-a)}$
Where $m(b-a)$ is the smallest value of $f(x)$ and $M(b-a)$ is the highest value of $f(x)$.
Option ‘A’ is correct
Note: Here we need to remember that the required limits are obtained by altering the limits of the given integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$- upper limit.
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Consider the given integral as
$I=\int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}$
The given integral has the interval as $0\le x\le 1$
For the required integral, we can alter the interval as
$0\le x\le 1$
On squaring, we get
$\Rightarrow 0\le {{x}^{2}}\le 1$
Again, on squaring, we get
$\Rightarrow 0\le {{x}^{4}}\le 1$
Adding $1$ on both sides,
$\begin{align}
& \Rightarrow 1+0\le 1+{{x}^{4}}\le 1+1 \\
& \Rightarrow 1\le 1+{{x}^{4}}\le 2 \\
\end{align}$
Applying square root, we get
$\begin{align}
& \Rightarrow \sqrt{1}\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
\end{align}$
We need the required variable in the denominator. So, if the terms in inequality are inverted or reciprocated then the inequality gets changed. I.e.,
\[\begin{align}
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow \dfrac{1}{1}\ge \dfrac{1}{\sqrt{1+{{x}^{4}}}}\ge \dfrac{1}{\sqrt{2}} \\
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \dfrac{1}{\sqrt{1+{{x}^{4}}}}\le 1 \\
\end{align}\]
Thus, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}\le 1 \\
& \therefore I\in \left[ \dfrac{1}{\sqrt{2}},1 \right] \\
\end{align}$
Here the smallest interval is defined for an integral as
$m(b-a)\le \int\limits_{a}^{b}{f(x)dx\le M(b-a)}$
Where $m(b-a)$ is the smallest value of $f(x)$ and $M(b-a)$ is the highest value of $f(x)$.
Option ‘A’ is correct
Note: Here we need to remember that the required limits are obtained by altering the limits of the given integral.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

