
The ratio of electric field vector ${\text{E}}$ and magnetic field vector ${\text{H}}$ i.e., $\left( {\dfrac{{\text{E}}}{{\text{H}}}} \right)$ has the dimensions of:
(A) Resistance
(B) Inductance
(C) Capacitance
(D) Product of inductance and capacitance
Answer
232.8k+ views
Hint: For finding the ratio of the dimensions of electric field vector and magnetic field vector, first of all try to recall the definition of electric field vector and its formula. Then find out the SI unit of the electric field vector. Similarly with magnetic field vectors. Then find the ratio of both quantities.
Complete solution:
Electric field is a region or space around a charged body in which its influence can be experienced. Electric field intensity is the measure of strength of the electric field and it is defined as the force experienced per unit test charge. It is a vector quantity.
Formula for electric field intensity is given by
${{\vec E = }}\dfrac{{{{\vec F}}}}{{{{\text{q}}_{\text{0}}}}}$
The SI unit of force is newton represented by ${\text{N}}$.
The SI unit of charge is coulomb represented by ${\text{C}}$.
The SI unit of the electric field vector is ${\text{N/C}}$ or ${\text{V/m}}$.
Magnetic field is a region or space around a magnet (or a current carrying conductor) in which its influence can be experienced. Magnetic field vector is defined as the ampere turn per unit length of the solenoid.
The SI unit of magnetic field vector is ${\text{A/m}}$.
The dimensions of the electric field vector is ${\text{volt/metre}}$ represented by ${\text{V/m}}$. The dimensions of the magnetic field vector is ${\text{Ampere/metre}}$ represented by ${\text{A/m}}$.
The ratio of dimensions of electric field vector and magnetic field vector is $\dfrac{{\dfrac{{\text{V}}}{{\text{m}}}}}{{\dfrac{{\text{A}}}{{\text{m}}}}}$ or $\dfrac{{\text{V}}}{{\text{A}}}$.
But according to the ohm’s law, the ratio of voltage and current gives resistance.
Therefore, option (A) is the correct choice.
Note: According to the ohm’s law the current (I) flowing through a conductor is directly proportional to the potential difference (V) applied across the ends of the conductor provided that physical conditions like temperature, pressure of conductor remain the same. Formula: ${\text{V = IR}}$ where ${\text{I = }}$ current flowing through the conductor and ${\text{R = }}$ resistance of conductor.
Complete solution:
Electric field is a region or space around a charged body in which its influence can be experienced. Electric field intensity is the measure of strength of the electric field and it is defined as the force experienced per unit test charge. It is a vector quantity.
Formula for electric field intensity is given by
${{\vec E = }}\dfrac{{{{\vec F}}}}{{{{\text{q}}_{\text{0}}}}}$
The SI unit of force is newton represented by ${\text{N}}$.
The SI unit of charge is coulomb represented by ${\text{C}}$.
The SI unit of the electric field vector is ${\text{N/C}}$ or ${\text{V/m}}$.
Magnetic field is a region or space around a magnet (or a current carrying conductor) in which its influence can be experienced. Magnetic field vector is defined as the ampere turn per unit length of the solenoid.
The SI unit of magnetic field vector is ${\text{A/m}}$.
The dimensions of the electric field vector is ${\text{volt/metre}}$ represented by ${\text{V/m}}$. The dimensions of the magnetic field vector is ${\text{Ampere/metre}}$ represented by ${\text{A/m}}$.
The ratio of dimensions of electric field vector and magnetic field vector is $\dfrac{{\dfrac{{\text{V}}}{{\text{m}}}}}{{\dfrac{{\text{A}}}{{\text{m}}}}}$ or $\dfrac{{\text{V}}}{{\text{A}}}$.
But according to the ohm’s law, the ratio of voltage and current gives resistance.
Therefore, option (A) is the correct choice.
Note: According to the ohm’s law the current (I) flowing through a conductor is directly proportional to the potential difference (V) applied across the ends of the conductor provided that physical conditions like temperature, pressure of conductor remain the same. Formula: ${\text{V = IR}}$ where ${\text{I = }}$ current flowing through the conductor and ${\text{R = }}$ resistance of conductor.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Uniform Acceleration in Physics

Why does capacitor block DC and allow AC class 12 physics JEE_Main

Understanding How a Current Loop Acts as a Magnetic Dipole

Step-by-Step Guide to Young’s Double Slit Experiment Derivation

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Electric field due to uniformly charged sphere class 12 physics JEE_Main

