
The range of values of x is given. Solve for x, ${{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)+{{\cot }^{-1}}\left( \dfrac{1-{{x}^{2}}}{2x} \right)=\dfrac{\pi }{3},-1 < x < 1 $
Answer
608.1k+ views
Hint: In this question, we have to find the value of x. But LHS has two different inverse trigonometric functions. So, we have to convert these inverse trigonometric functions into a single form of inverse trigonometric functions. We consider \[\theta ={{\cot }^{-1}}\left( \dfrac{1-{{x}^{2}}}{2x} \right)\] and then transform \[\cot \theta \] into \[\tan \theta \] . Then, solve the given equation using \[\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}\] .
Complete step-by-step solution -
Solving the LHS part, we get
\[{{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)+{{\cot }^{-1}}\left( \dfrac{1-{{x}^{2}}}{2x} \right)\]………………….(1)
Here, the problem is we have inverse functions of tan and cot.
First of all, we have to convert it into a single inverse function.
Let us assume, \[\theta ={{\cot }^{-1}}\left( \dfrac{1-{{x}^{2}}}{2x} \right)\]……………..(2)
Taking cot in both LHS as well as RHS in equation(2), we get
\[\cot \theta =\dfrac{1-{{x}^{2}}}{2x}\]……………….(3)
Our target is to make this cot function into a tan function so that we can have the same inverse functions in LHS.
From equation(3), we have
\[\begin{align}
& \cot \theta =\dfrac{1-{{x}^{2}}}{2x} \\
& \Rightarrow \dfrac{1}{\tan \theta }=\dfrac{1-{{x}^{2}}}{2x} \\
& \Rightarrow \tan \theta =\dfrac{2x}{1-{{x}^{2}}} \\
\end{align}\]
\[\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\]……………….(4)
We can say that equation(2) and equation(4) are equal.
\[\theta ={{\cot }^{-1}}\left( \dfrac{1-{{x}^{2}}}{2x} \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\]………………….(5)
Using equation(5), we can write equation(1) as,
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)+{{\cot }^{-1}}\left( \dfrac{1-{{x}^{2}}}{2x} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)+{{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right) \\
& =2{{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right) \\
\end{align}\]
Transforming the given expression, we have to solve \[2{{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)=\dfrac{\pi }{3}\] .
Diving by 2 in both LHS and RHS, we get
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)=\dfrac{\pi }{6}\]
Now, solving this equation and using \[\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}\] , we get
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)=\dfrac{\pi }{6} \\
& \Rightarrow \left( \dfrac{2x}{1-{{x}^{2}}} \right)=\tan \dfrac{\pi }{6} \\
& \Rightarrow \left( \dfrac{2x}{1-{{x}^{2}}} \right)=\dfrac{1}{\sqrt{3}} \\
& \Rightarrow 2\sqrt{3}x=1-{{x}^{2}} \\
& \Rightarrow {{x}^{2}}+2\sqrt{3}x-1=0 \\
\end{align}\]
Here, we have a quadratic equation. We can get the values of x after solving this quadratic equation.
\[\begin{align}
& x=\dfrac{-2\sqrt{3}\pm \sqrt{12-4(-1)}}{2} \\
& \Rightarrow x=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2} \\
& \Rightarrow x=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2} \\
& \Rightarrow x=\dfrac{-2\sqrt{3}\pm 4}{2} \\
& \Rightarrow x= - \sqrt{3}\pm {2} \\
\end{align}\]
We have $ -1 < x < 1$ .
So, \[x=2-\sqrt{3}\] .
Note: In this question, after solving the quadratic equation, we get two values of x. One can write both values of x as an answer, which is wrong. According to the information provided in the question, we have one restriction on x that is x should lie between -1 and 1. To satisfy this information, we have to take\[x=2-\sqrt{3}\] as the value of x and ignore the other value of x.
Complete step-by-step solution -
Solving the LHS part, we get
\[{{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)+{{\cot }^{-1}}\left( \dfrac{1-{{x}^{2}}}{2x} \right)\]………………….(1)
Here, the problem is we have inverse functions of tan and cot.
First of all, we have to convert it into a single inverse function.
Let us assume, \[\theta ={{\cot }^{-1}}\left( \dfrac{1-{{x}^{2}}}{2x} \right)\]……………..(2)
Taking cot in both LHS as well as RHS in equation(2), we get
\[\cot \theta =\dfrac{1-{{x}^{2}}}{2x}\]……………….(3)
Our target is to make this cot function into a tan function so that we can have the same inverse functions in LHS.
From equation(3), we have
\[\begin{align}
& \cot \theta =\dfrac{1-{{x}^{2}}}{2x} \\
& \Rightarrow \dfrac{1}{\tan \theta }=\dfrac{1-{{x}^{2}}}{2x} \\
& \Rightarrow \tan \theta =\dfrac{2x}{1-{{x}^{2}}} \\
\end{align}\]
\[\Rightarrow \theta ={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\]……………….(4)
We can say that equation(2) and equation(4) are equal.
\[\theta ={{\cot }^{-1}}\left( \dfrac{1-{{x}^{2}}}{2x} \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\]………………….(5)
Using equation(5), we can write equation(1) as,
\[\begin{align}
& {{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)+{{\cot }^{-1}}\left( \dfrac{1-{{x}^{2}}}{2x} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)+{{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right) \\
& =2{{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right) \\
\end{align}\]
Transforming the given expression, we have to solve \[2{{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)=\dfrac{\pi }{3}\] .
Diving by 2 in both LHS and RHS, we get
\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)=\dfrac{\pi }{6}\]
Now, solving this equation and using \[\tan \dfrac{\pi }{6}=\dfrac{1}{\sqrt{3}}\] , we get
\[\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)=\dfrac{\pi }{6} \\
& \Rightarrow \left( \dfrac{2x}{1-{{x}^{2}}} \right)=\tan \dfrac{\pi }{6} \\
& \Rightarrow \left( \dfrac{2x}{1-{{x}^{2}}} \right)=\dfrac{1}{\sqrt{3}} \\
& \Rightarrow 2\sqrt{3}x=1-{{x}^{2}} \\
& \Rightarrow {{x}^{2}}+2\sqrt{3}x-1=0 \\
\end{align}\]
Here, we have a quadratic equation. We can get the values of x after solving this quadratic equation.
\[\begin{align}
& x=\dfrac{-2\sqrt{3}\pm \sqrt{12-4(-1)}}{2} \\
& \Rightarrow x=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2} \\
& \Rightarrow x=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2} \\
& \Rightarrow x=\dfrac{-2\sqrt{3}\pm 4}{2} \\
& \Rightarrow x= - \sqrt{3}\pm {2} \\
\end{align}\]
We have $ -1 < x < 1$ .
So, \[x=2-\sqrt{3}\] .
Note: In this question, after solving the quadratic equation, we get two values of x. One can write both values of x as an answer, which is wrong. According to the information provided in the question, we have one restriction on x that is x should lie between -1 and 1. To satisfy this information, we have to take\[x=2-\sqrt{3}\] as the value of x and ignore the other value of x.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

