
The potential difference needed for the electrolytic reduction of aluminum oxide \[\left( {A{l_2}{O_3}} \right)\] at \[500^\circ C\] is at least:
A. \[4.5{\text{ }}V\]
B. \[3.0{\text{ }}V\]
C. \[ - 5.0\,\,V\]
D. \[ - 2.5\,\,V\]
Answer
580.2k+ views
Hint: Electrode potential is a measure of tendency of an electrode in a half cell to lose or gain electrons. The oxidation potentials give the tendency to lose electrons and reduction potentials give the tendency to gain electrons.
Formula used: $\Delta G^\circ = - nFE{^\circ _{cell}}$
Where $\Delta G^\circ = $Gibbs free energy change
\[n = \] Number of electrons change
\[F = \] Faraday
\[E{^\circ _{cell}} = \] Potential difference
Complete answer:
Relationship between Gibbs free energy change and the cell potential is given below
$\Delta G^\circ = - nF\,E{^\circ _{cell}}$………………….(i)
Where \[DG^\circ = \] Gibbs free energy change
\[n = \] number of electron transferred
\[F = \] Faraday
\[E{^\circ _{cell}} = \] potential difference
We know that electrolytic reduction of aluminum oxide
$\dfrac{2}{3}A{l_2}{O_3}\xrightarrow{{}}\dfrac{4}{2}Al + {O_2}\,\,\,\Delta G^\circ = + 960KJ/mol$
Number of electrons gain by metal $ = 4$ electrons
\[F = 96500\,C.\]
Substitute the value in Equation (1), we get
$960 \times 1000 = - 4 \times 96500 \times E{^\circ _{cell}}$, solve the equation and find the potential difference
$E{^\circ _{cell}} = - \dfrac{{960000}}{{4 \times 96500}}$
$ = - 2.48V$
So, potential difference is \[ - 2.5V\]
Hence, the correct option is D.
Note:The decrease in free energy of the system in a spontaneous redox reaction is equal to the electrical work - done by the system on the surroundings. In thermodynamics, the Gibbs free energy is thermodynamics potential that can be used to calculate the maximum of reversible work that may be performed by a thermodynamics system at a constant temperature and pressure.In a galvanic cell the Gibbs free energy related to potential by: $\Delta G^\circ = - nFE{^\circ _{cell}}$ if $E^\circ $cell greater than zero, then the process is spontaneous (galvanic cell). If $E^\circ $cell less than zero, then the process is nonspontaneous (electrolytic cell).
Formula used: $\Delta G^\circ = - nFE{^\circ _{cell}}$
Where $\Delta G^\circ = $Gibbs free energy change
\[n = \] Number of electrons change
\[F = \] Faraday
\[E{^\circ _{cell}} = \] Potential difference
Complete answer:
Relationship between Gibbs free energy change and the cell potential is given below
$\Delta G^\circ = - nF\,E{^\circ _{cell}}$………………….(i)
Where \[DG^\circ = \] Gibbs free energy change
\[n = \] number of electron transferred
\[F = \] Faraday
\[E{^\circ _{cell}} = \] potential difference
We know that electrolytic reduction of aluminum oxide
$\dfrac{2}{3}A{l_2}{O_3}\xrightarrow{{}}\dfrac{4}{2}Al + {O_2}\,\,\,\Delta G^\circ = + 960KJ/mol$
Number of electrons gain by metal $ = 4$ electrons
\[F = 96500\,C.\]
Substitute the value in Equation (1), we get
$960 \times 1000 = - 4 \times 96500 \times E{^\circ _{cell}}$, solve the equation and find the potential difference
$E{^\circ _{cell}} = - \dfrac{{960000}}{{4 \times 96500}}$
$ = - 2.48V$
So, potential difference is \[ - 2.5V\]
Hence, the correct option is D.
Note:The decrease in free energy of the system in a spontaneous redox reaction is equal to the electrical work - done by the system on the surroundings. In thermodynamics, the Gibbs free energy is thermodynamics potential that can be used to calculate the maximum of reversible work that may be performed by a thermodynamics system at a constant temperature and pressure.In a galvanic cell the Gibbs free energy related to potential by: $\Delta G^\circ = - nFE{^\circ _{cell}}$ if $E^\circ $cell greater than zero, then the process is spontaneous (galvanic cell). If $E^\circ $cell less than zero, then the process is nonspontaneous (electrolytic cell).
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

