# The number of real roots of \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\] is

(a) 0

(b) 2

(c) 4

(d) None of these

Answer

Verified

361.8k+ views

Hint: To find the roots of the given equation, factorize the given equation by splitting the middle terms. When the equation is factored up to a quadratic equation, calculate the discriminant of the equation to check the nature of the roots. Count all the real roots of the equation and ignore the imaginary ones.

Complete step-by-step answer:

We have to find the real roots of the equation \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\]. To do so, we will firstly simplify the equation and then solve it to find the roots.

We know that \[{{\left( a+b \right)}^{4}}={{a}^{4}}+{{b}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}\].

$\Rightarrow$ \[{{x}^{4}}+4{{x}^{3}}\left( 3 \right)+6{{x}^{2}}{{\left( 3 \right)}^{2}}+4x{{\left( 3 \right)}^{3}}+{{\left( 3 \right)}^{4}}+{{x}^{4}}+4{{x}^{3}}\left( 5 \right)+6{{x}^{2}}{{\left( 5 \right)}^{2}}+4x{{\left( 5 \right)}^{3}}+{{\left( 5 \right)}^{4}}=16\].

Simplifying the above expression, we have

$\Rightarrow$ \[2{{x}^{4}}+32{{x}^{3}}+204{{x}^{2}}+608x+706=16\].

$\Rightarrow$ \[{{x}^{4}}+16{{x}^{3}}+102{{x}^{2}}+304x+345=0\].

We will now factorize the above equation by splitting the terms.

Rearranging the terms of the above equation, we have

$\Rightarrow$ \[{{x}^{4}}+3{{x}^{3}}+13{{x}^{3}}+39{{x}^{2}}+63{{x}^{2}}+189x+115x+345=0\].

Thus, we have

$\Rightarrow$ \[{{x}^{3}}\left( x+3 \right)+13{{x}^{2}}\left( x+3 \right)+63x\left( x+3 \right)+115\left( x+3 \right)=0\].

Taking out the common terms, we have

$\Rightarrow$ \[\left( x+3 \right)\left( {{x}^{3}}+13{{x}^{2}}+63x+115 \right)=0\].

Further splitting the terms of the equation, we have

$\Rightarrow$ \[\left( x+3 \right)\left( {{x}^{3}}+5{{x}^{2}}+8{{x}^{2}}+40x+23x+115 \right)=0\].

Thus, we have

$\Rightarrow$ \[\left( x+3 \right)\{{{x}^{2}}\left( x+5 \right)+8x\left( x+5 \right)+23\left( x+5 \right)\}=0\].

Taking out the common terms, we have \[\left( x+3 \right)\left( x+5 \right)\left( {{x}^{2}}+8x+23 \right)=0\].

We will now split the terms of the equation \[{{x}^{2}}+8x+23\].

We will firstly try to evaluate the discriminant of this equation.

We know that any equation of the form \[a{{x}^{2}}+bx+c\] has the value of discriminant as \[{{b}^{2}}-4ac\].

Substituting \[a=1,b=8,c=23\] in the above equation, we have the value of discriminant as \[{{\left( 8 \right)}^{2}}-4\left( 23 \right)=64-92=-28\].

We observe that the equation \[{{x}^{2}}+8x+23\] has a negative value of discriminant. Thus, it has imaginary roots.

Hence, we observe that only real roots of the equation \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\] can be obtained by equating \[\left( x+3 \right)\left( x+5 \right)\] to zero.

So, we have \[\left( x+3 \right)\left( x+5 \right)=0\]. Thus, we have \[x=-3,-5\].

Hence, the equation \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\] has only two real roots, which is option (b).

Note: It’s not necessary to completely factorize the equation to find the number of real roots. We can check the nature of roots of a quadratic equation by calculating the value of discriminant. However, it’s not necessary to calculate the value of discriminant. We can factorize the equation completely and find its roots.

Complete step-by-step answer:

We have to find the real roots of the equation \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\]. To do so, we will firstly simplify the equation and then solve it to find the roots.

We know that \[{{\left( a+b \right)}^{4}}={{a}^{4}}+{{b}^{4}}+4{{a}^{3}}b+6{{a}^{2}}{{b}^{2}}+4a{{b}^{3}}\].

$\Rightarrow$ \[{{x}^{4}}+4{{x}^{3}}\left( 3 \right)+6{{x}^{2}}{{\left( 3 \right)}^{2}}+4x{{\left( 3 \right)}^{3}}+{{\left( 3 \right)}^{4}}+{{x}^{4}}+4{{x}^{3}}\left( 5 \right)+6{{x}^{2}}{{\left( 5 \right)}^{2}}+4x{{\left( 5 \right)}^{3}}+{{\left( 5 \right)}^{4}}=16\].

Simplifying the above expression, we have

$\Rightarrow$ \[2{{x}^{4}}+32{{x}^{3}}+204{{x}^{2}}+608x+706=16\].

$\Rightarrow$ \[{{x}^{4}}+16{{x}^{3}}+102{{x}^{2}}+304x+345=0\].

We will now factorize the above equation by splitting the terms.

Rearranging the terms of the above equation, we have

$\Rightarrow$ \[{{x}^{4}}+3{{x}^{3}}+13{{x}^{3}}+39{{x}^{2}}+63{{x}^{2}}+189x+115x+345=0\].

Thus, we have

$\Rightarrow$ \[{{x}^{3}}\left( x+3 \right)+13{{x}^{2}}\left( x+3 \right)+63x\left( x+3 \right)+115\left( x+3 \right)=0\].

Taking out the common terms, we have

$\Rightarrow$ \[\left( x+3 \right)\left( {{x}^{3}}+13{{x}^{2}}+63x+115 \right)=0\].

Further splitting the terms of the equation, we have

$\Rightarrow$ \[\left( x+3 \right)\left( {{x}^{3}}+5{{x}^{2}}+8{{x}^{2}}+40x+23x+115 \right)=0\].

Thus, we have

$\Rightarrow$ \[\left( x+3 \right)\{{{x}^{2}}\left( x+5 \right)+8x\left( x+5 \right)+23\left( x+5 \right)\}=0\].

Taking out the common terms, we have \[\left( x+3 \right)\left( x+5 \right)\left( {{x}^{2}}+8x+23 \right)=0\].

We will now split the terms of the equation \[{{x}^{2}}+8x+23\].

We will firstly try to evaluate the discriminant of this equation.

We know that any equation of the form \[a{{x}^{2}}+bx+c\] has the value of discriminant as \[{{b}^{2}}-4ac\].

Substituting \[a=1,b=8,c=23\] in the above equation, we have the value of discriminant as \[{{\left( 8 \right)}^{2}}-4\left( 23 \right)=64-92=-28\].

We observe that the equation \[{{x}^{2}}+8x+23\] has a negative value of discriminant. Thus, it has imaginary roots.

Hence, we observe that only real roots of the equation \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\] can be obtained by equating \[\left( x+3 \right)\left( x+5 \right)\] to zero.

So, we have \[\left( x+3 \right)\left( x+5 \right)=0\]. Thus, we have \[x=-3,-5\].

Hence, the equation \[{{\left( x+3 \right)}^{4}}+{{\left( x+5 \right)}^{4}}=16\] has only two real roots, which is option (b).

Note: It’s not necessary to completely factorize the equation to find the number of real roots. We can check the nature of roots of a quadratic equation by calculating the value of discriminant. However, it’s not necessary to calculate the value of discriminant. We can factorize the equation completely and find its roots.

Last updated date: 27th Sep 2023

•

Total views: 361.8k

•

Views today: 5.61k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the basic unit of classification class 11 biology CBSE

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Draw a welllabelled diagram of a plant cell class 11 biology CBSE

Find the value of the expression given below sin 30circ class 11 maths CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE