
The internal resistance of a \[2.1V\] cell which gives a current of $0.2A$ through a resistance of $10\Omega $ is:
A) $0.2\Omega $
B) $0.5\Omega $
C) $0.8\Omega $
D) $1.0\Omega $
Answer
232.8k+ views
Hint: We know that internal and external resistance are the two different aspects. So, we will denote these two properties with two different variables. Now, in the question we are given external resistance, current and voltage of the cell. Now, we know that there is a relation between all these quantities which is given by ohm’s law. Hence, we will use ohm’s law to calculate the internal resistance of the cell by substituting the values.
Formula used:
We will use ohm’s law, that is \[V = I\left( {R + r} \right)\]
Where, $V$ is voltage, $I$ is current, $R$ is external resistance and $r$ is internal resistance.
Complete step by step solution:
In the above question, we can see that
Internal resistance is \[2.1V\], current is $0.2A$ , external resistance is $10\Omega $.
Now, to calculate internal resistance, we will use ohm’s law.
Now, we know that ohm’s law is \[V = I\left( {R + r} \right)\], where, $V$ is voltage, $I$ is current, $R$ is external resistance and $r$ is internal resistance.
So, by substituting the values of external resistance, voltage and current in the given equation,
\[
V = I\left( {R + r} \right) \\
\Rightarrow 2.1 = \left( {0.2} \right)\left( {10 + r} \right) \\
\Rightarrow 10 + r = \dfrac{{21}}{2} \\
\Rightarrow r = \dfrac{{21}}{2} - 10 \\
\]
Now, by simplifying the above value,
We get,
$r = 0.5\Omega $
Hence, the internal resistance of the given cell is $0.5\Omega $ .
Hence, the correct option is (B).
Note: In the above problem we have to note that internal and external resistance are different properties and we know that total resistance is the sum of internal and external resistance. Now, in the calculation part we have to take two variables for internal and external resistance. Now, by substituting the values and simplifying the equation, we will get our answer.
Formula used:
We will use ohm’s law, that is \[V = I\left( {R + r} \right)\]
Where, $V$ is voltage, $I$ is current, $R$ is external resistance and $r$ is internal resistance.
Complete step by step solution:
In the above question, we can see that
Internal resistance is \[2.1V\], current is $0.2A$ , external resistance is $10\Omega $.
Now, to calculate internal resistance, we will use ohm’s law.
Now, we know that ohm’s law is \[V = I\left( {R + r} \right)\], where, $V$ is voltage, $I$ is current, $R$ is external resistance and $r$ is internal resistance.
So, by substituting the values of external resistance, voltage and current in the given equation,
\[
V = I\left( {R + r} \right) \\
\Rightarrow 2.1 = \left( {0.2} \right)\left( {10 + r} \right) \\
\Rightarrow 10 + r = \dfrac{{21}}{2} \\
\Rightarrow r = \dfrac{{21}}{2} - 10 \\
\]
Now, by simplifying the above value,
We get,
$r = 0.5\Omega $
Hence, the internal resistance of the given cell is $0.5\Omega $ .
Hence, the correct option is (B).
Note: In the above problem we have to note that internal and external resistance are different properties and we know that total resistance is the sum of internal and external resistance. Now, in the calculation part we have to take two variables for internal and external resistance. Now, by substituting the values and simplifying the equation, we will get our answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

