
The given terms, ${\log _3}2$, ${\log _6}2$, ${\log _{12}}2$ are in
${\text{A}}{\text{.}}$ HP
${\text{B}}{\text{.}}$ AP
${\text{C}}{\text{.}}$ GP
${\text{D}}{\text{.}}$ None of these
Answer
216.6k+ views
Hint- Make the base of all logs same and perform specific operations to find the required answer. Doing by eliminating options in competitive exams will be better.
Let \[a = {\log _3}2\], \[b = {\log _6}2\] and \[c = {\log _{12}}2\]
Since, \[{\log _n}m = \dfrac{{\log m}}{{\log n}}\]
\[ \Rightarrow a = \dfrac{{\log 2}}{{\log 3}}\], \[b = \dfrac{{\log 2}}{{\log 6}}\], \[c = \dfrac{{\log 2}}{{\log 12}}\]
Here, the reciprocal of the given numbers are given by \[\dfrac{1}{a} = \dfrac{{\log 3}}{{\log 2}},\dfrac{1}{b} = \dfrac{{\log 6}}{{\log 2}},\dfrac{1}{c} = \dfrac{{\log 12}}{{\log 2}}\]
Now let us find out \[\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{\log 3}}{{\log 2}} + \dfrac{{\log 12}}{{\log 2}} = \dfrac{{\log 3 + \log 12}}{{\log 2}}\]
As we know that \[\log m + \log n = \log mn\]
\[ \Rightarrow \dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{\log \left( {3 \times 12} \right)}}{{\log 2}} = \dfrac{{\log 36}}{{\log 2}} = \dfrac{{\log \left( {{6^2}} \right)}}{{\log 2}}\]
Also we know that \[{\text{log}}\left( {{m^n}} \right) = n\log m\]
\[ \Rightarrow \dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{2\log 6}}{{\log 2}} = \dfrac{2}{b}\].
Since, the condition for three numbers i.e., \[a,b,c\] to be in Harmonic progression is \[\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{2}{b}\].
Therefore, the given three numbers i.e., \[a = {\log _3}2,{\text{ }}b = {\log _6}2,{\text{ }}c = {\log _{12}}2\] are clearly in HP.
Therefore, option A is correct.
Note- For three numbers to be in Harmonic Progression (HP), twice the reciprocal of the middle number should be equal to the sum of the reciprocal of the other two numbers.
Let \[a = {\log _3}2\], \[b = {\log _6}2\] and \[c = {\log _{12}}2\]
Since, \[{\log _n}m = \dfrac{{\log m}}{{\log n}}\]
\[ \Rightarrow a = \dfrac{{\log 2}}{{\log 3}}\], \[b = \dfrac{{\log 2}}{{\log 6}}\], \[c = \dfrac{{\log 2}}{{\log 12}}\]
Here, the reciprocal of the given numbers are given by \[\dfrac{1}{a} = \dfrac{{\log 3}}{{\log 2}},\dfrac{1}{b} = \dfrac{{\log 6}}{{\log 2}},\dfrac{1}{c} = \dfrac{{\log 12}}{{\log 2}}\]
Now let us find out \[\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{\log 3}}{{\log 2}} + \dfrac{{\log 12}}{{\log 2}} = \dfrac{{\log 3 + \log 12}}{{\log 2}}\]
As we know that \[\log m + \log n = \log mn\]
\[ \Rightarrow \dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{\log \left( {3 \times 12} \right)}}{{\log 2}} = \dfrac{{\log 36}}{{\log 2}} = \dfrac{{\log \left( {{6^2}} \right)}}{{\log 2}}\]
Also we know that \[{\text{log}}\left( {{m^n}} \right) = n\log m\]
\[ \Rightarrow \dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{2\log 6}}{{\log 2}} = \dfrac{2}{b}\].
Since, the condition for three numbers i.e., \[a,b,c\] to be in Harmonic progression is \[\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{2}{b}\].
Therefore, the given three numbers i.e., \[a = {\log _3}2,{\text{ }}b = {\log _6}2,{\text{ }}c = {\log _{12}}2\] are clearly in HP.
Therefore, option A is correct.
Note- For three numbers to be in Harmonic Progression (HP), twice the reciprocal of the middle number should be equal to the sum of the reciprocal of the other two numbers.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

