The given terms, ${\log _3}2$, ${\log _6}2$, ${\log _{12}}2$ are in
${\text{A}}{\text{.}}$ HP
${\text{B}}{\text{.}}$ AP
${\text{C}}{\text{.}}$ GP
${\text{D}}{\text{.}}$ None of these
Last updated date: 16th Mar 2023
•
Total views: 306k
•
Views today: 5.87k
Answer
306k+ views
Hint- Make the base of all logs same and perform specific operations to find the required answer. Doing by eliminating options in competitive exams will be better.
Let \[a = {\log _3}2\], \[b = {\log _6}2\] and \[c = {\log _{12}}2\]
Since, \[{\log _n}m = \dfrac{{\log m}}{{\log n}}\]
\[ \Rightarrow a = \dfrac{{\log 2}}{{\log 3}}\], \[b = \dfrac{{\log 2}}{{\log 6}}\], \[c = \dfrac{{\log 2}}{{\log 12}}\]
Here, the reciprocal of the given numbers are given by \[\dfrac{1}{a} = \dfrac{{\log 3}}{{\log 2}},\dfrac{1}{b} = \dfrac{{\log 6}}{{\log 2}},\dfrac{1}{c} = \dfrac{{\log 12}}{{\log 2}}\]
Now let us find out \[\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{\log 3}}{{\log 2}} + \dfrac{{\log 12}}{{\log 2}} = \dfrac{{\log 3 + \log 12}}{{\log 2}}\]
As we know that \[\log m + \log n = \log mn\]
\[ \Rightarrow \dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{\log \left( {3 \times 12} \right)}}{{\log 2}} = \dfrac{{\log 36}}{{\log 2}} = \dfrac{{\log \left( {{6^2}} \right)}}{{\log 2}}\]
Also we know that \[{\text{log}}\left( {{m^n}} \right) = n\log m\]
\[ \Rightarrow \dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{2\log 6}}{{\log 2}} = \dfrac{2}{b}\].
Since, the condition for three numbers i.e., \[a,b,c\] to be in Harmonic progression is \[\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{2}{b}\].
Therefore, the given three numbers i.e., \[a = {\log _3}2,{\text{ }}b = {\log _6}2,{\text{ }}c = {\log _{12}}2\] are clearly in HP.
Therefore, option A is correct.
Note- For three numbers to be in Harmonic Progression (HP), twice the reciprocal of the middle number should be equal to the sum of the reciprocal of the other two numbers.
Let \[a = {\log _3}2\], \[b = {\log _6}2\] and \[c = {\log _{12}}2\]
Since, \[{\log _n}m = \dfrac{{\log m}}{{\log n}}\]
\[ \Rightarrow a = \dfrac{{\log 2}}{{\log 3}}\], \[b = \dfrac{{\log 2}}{{\log 6}}\], \[c = \dfrac{{\log 2}}{{\log 12}}\]
Here, the reciprocal of the given numbers are given by \[\dfrac{1}{a} = \dfrac{{\log 3}}{{\log 2}},\dfrac{1}{b} = \dfrac{{\log 6}}{{\log 2}},\dfrac{1}{c} = \dfrac{{\log 12}}{{\log 2}}\]
Now let us find out \[\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{\log 3}}{{\log 2}} + \dfrac{{\log 12}}{{\log 2}} = \dfrac{{\log 3 + \log 12}}{{\log 2}}\]
As we know that \[\log m + \log n = \log mn\]
\[ \Rightarrow \dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{\log \left( {3 \times 12} \right)}}{{\log 2}} = \dfrac{{\log 36}}{{\log 2}} = \dfrac{{\log \left( {{6^2}} \right)}}{{\log 2}}\]
Also we know that \[{\text{log}}\left( {{m^n}} \right) = n\log m\]
\[ \Rightarrow \dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{2\log 6}}{{\log 2}} = \dfrac{2}{b}\].
Since, the condition for three numbers i.e., \[a,b,c\] to be in Harmonic progression is \[\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{2}{b}\].
Therefore, the given three numbers i.e., \[a = {\log _3}2,{\text{ }}b = {\log _6}2,{\text{ }}c = {\log _{12}}2\] are clearly in HP.
Therefore, option A is correct.
Note- For three numbers to be in Harmonic Progression (HP), twice the reciprocal of the middle number should be equal to the sum of the reciprocal of the other two numbers.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Name the Largest and the Smallest Cell in the Human Body ?

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main

A sample of an ideal gas is expanded from 1dm3 to 3dm3 class 11 chemistry CBSE
