
The function \[f\left( x \right) = {{\text{x}}^2} + 2x - 5\] is strictly increasing in the interval
A. $\left( { - \infty , - 1} \right)$
B. $\left( { - \infty , - 1} \right]$
C. $\left[ { - 1,\infty } \right)$
D. $\left( { - 1,\infty } \right)$
Answer
216.6k+ views
Hint: Differentiate the equation and equate it with 0. Condition of minima and maxima is when the sign of double derivative is positive it’s minima point and when it's negative its maxima point.
We have been given
\[f\left( x \right) = {{\text{x}}^2} + 2x - 5\]
As coefficient of ${{\text{x}}^2}$ is positive so we will get a local minima in this equation
Now when we differentiate the equation we get
$f'\left( x \right) = 2x + 2$
To find the local minima we need to equate it with 0
So, by equating $f'\left( x \right) = 0$ we get,
$2x + 2 = 0$
$ \Rightarrow x = - 1$
Now that we have the minima we can observe the points in right and left to it.
So for
$x < - 1;$ $f'\left( x \right) < 0$
And
$x > - 1;$ $f'\left( x \right) > 0$
So, as $f'\left( x \right) > 0$ for $x > - 1$
Therefore, $f\left( x \right)$ is strictly increasing in $\left( { - 1,\infty } \right)$.
Hence correct Option is D.
Note: In this question firstly we differentiate the given equation and equate it with 0. After equating them we get the extreme points which in this case is local minima. Now, we observe the neighbourhood of the point and get our answer.
We have been given
\[f\left( x \right) = {{\text{x}}^2} + 2x - 5\]
As coefficient of ${{\text{x}}^2}$ is positive so we will get a local minima in this equation
Now when we differentiate the equation we get
$f'\left( x \right) = 2x + 2$
To find the local minima we need to equate it with 0
So, by equating $f'\left( x \right) = 0$ we get,
$2x + 2 = 0$
$ \Rightarrow x = - 1$
Now that we have the minima we can observe the points in right and left to it.
So for
$x < - 1;$ $f'\left( x \right) < 0$
And
$x > - 1;$ $f'\left( x \right) > 0$
So, as $f'\left( x \right) > 0$ for $x > - 1$
Therefore, $f\left( x \right)$ is strictly increasing in $\left( { - 1,\infty } \right)$.
Hence correct Option is D.
Note: In this question firstly we differentiate the given equation and equate it with 0. After equating them we get the extreme points which in this case is local minima. Now, we observe the neighbourhood of the point and get our answer.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

