
The function arctan(sinx + cosx) is increasing in the interval
[a] $\left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right)$
[b] $\left( -\dfrac{\pi }{2},\dfrac{\pi }{4} \right)$
[c] $\left( 0,\dfrac{\pi }{2} \right)$
[d] $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$
Answer
232.8k+ views
Hint: Use the fact that if f(x) is an increasing function, then $f'\left( x \right)\ge 0$. Alternatively, use the fact that if f(x) is an increasing function, then $fog\left( x \right)$ is an increasing function whenever g(x) is increasing and $fog\left( x \right)$ is a decreasing function whenever g(x) is a decreasing function.
Complete step-by-step solution -
We have f(x) = arctan(sinx+cosx)
Differentiating both sides, we get
$f'\left( x \right)=\dfrac{d}{dx}\left( \arctan \left( \sin x+\cos x \right) \right)$
We know from chain rule of differentiation that $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=\dfrac{d}{d\left( g\left( x \right) \right)}f\left( g\left( x \right) \right)\dfrac{d}{dx}\left( g\left( x \right) \right)$
Hence $f'\left( x \right)=\dfrac{d}{d\left( \sin x+\cos x \right)}\arctan \left( \sin x+\cos x \right)\dfrac{d}{dx}\left( \sin x+\cos x \right)$
We know that $\dfrac{d}{dx}\arctan x=\dfrac{1}{1+{{x}^{2}}}$
Hence we have
$f'\left( x \right)=\dfrac{1}{{{\left( \sin x+\cos x \right)}^{2}}+1}\dfrac{d}{dx}\left( \sin x+\cos x \right)$
We know that $\dfrac{d}{dx}\left( f\left( x \right)+g\left( x \right) \right)=\dfrac{d}{dx}\left( f\left( x \right) \right)+\dfrac{d}{dx}\left( g\left( x \right) \right)$
Using , we get
$f'\left( x \right)=\dfrac{1}{1+{{\left( \sin x+\cos x \right)}^{2}}}\left( \dfrac{d}{dx}\sin x+\dfrac{d}{dx}\cos x \right)$
Since $\dfrac{d}{dx}\sin x=\cos x$ and $\dfrac{d}{dx}\cos x=-\sin x$, we have
$f'\left( x \right)=\dfrac{1}{1+{{\left( \sin x+\cos x \right)}^{2}}}\left( \cos x-\sin x \right)$
Now for f(x) to be increasing, we have
$f'\left( x \right)\ge 0$
Hence, we have
$\dfrac{1}{1+{{\left( \sin x+\cos x \right)}^{2}}}\left( \cos x-\sin x \right)\ge 0$
Since $\dfrac{1}{1+{{\left( \sin x+\cos x \right)}^{2}}}>0$ , we have
$\left( \cos x-\sin x \right)\ge 0$
Hence $\cos x>\sin x$
In the interval $\left( -\dfrac{\pi }{2},\dfrac{\pi }{4} \right)$ cosx>sinx.
Hence we have
In the interval $\left( -\dfrac{\pi }{2},\dfrac{\pi }{4} \right)$ f(x) is increasing.
Hence option [b] is correct.
Note: Alternatively, we have,
arc tanx is an increasing function. Hence arctan(cosx+sinx) is increasing whenever sinx+cosx is increasing.
Now sinx +cosx $=\dfrac{1}{\sqrt{2}}\left( \sin \left( x-\dfrac{\pi }{4} \right) \right)$
Now we know that sinx is an increasing function in the interval $\left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$
Hence $\sin x+\cos x$ is increasing in the interval $\left( \dfrac{-\pi }{2}-\dfrac{\pi }{4},\dfrac{\pi }{2}-\dfrac{\pi }{4} \right)=\left( \dfrac{-3\pi }{4},\dfrac{\pi }{4} \right)$
Hence sinx + cosx is increasing in the interval $\left( \dfrac{-\pi }{2},\dfrac{\pi }{4} \right)$
Hence option [b] is correct.
Graph of arctan(sinx+cosx)

As is evident from the graph that f(x) is increasing in interval [A,B], where $\text{A=}\dfrac{-\pi }{2}$ and $\text{B=}\dfrac{\pi }{4}$.
Complete step-by-step solution -
We have f(x) = arctan(sinx+cosx)
Differentiating both sides, we get
$f'\left( x \right)=\dfrac{d}{dx}\left( \arctan \left( \sin x+\cos x \right) \right)$
We know from chain rule of differentiation that $\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=\dfrac{d}{d\left( g\left( x \right) \right)}f\left( g\left( x \right) \right)\dfrac{d}{dx}\left( g\left( x \right) \right)$
Hence $f'\left( x \right)=\dfrac{d}{d\left( \sin x+\cos x \right)}\arctan \left( \sin x+\cos x \right)\dfrac{d}{dx}\left( \sin x+\cos x \right)$
We know that $\dfrac{d}{dx}\arctan x=\dfrac{1}{1+{{x}^{2}}}$
Hence we have
$f'\left( x \right)=\dfrac{1}{{{\left( \sin x+\cos x \right)}^{2}}+1}\dfrac{d}{dx}\left( \sin x+\cos x \right)$
We know that $\dfrac{d}{dx}\left( f\left( x \right)+g\left( x \right) \right)=\dfrac{d}{dx}\left( f\left( x \right) \right)+\dfrac{d}{dx}\left( g\left( x \right) \right)$
Using , we get
$f'\left( x \right)=\dfrac{1}{1+{{\left( \sin x+\cos x \right)}^{2}}}\left( \dfrac{d}{dx}\sin x+\dfrac{d}{dx}\cos x \right)$
Since $\dfrac{d}{dx}\sin x=\cos x$ and $\dfrac{d}{dx}\cos x=-\sin x$, we have
$f'\left( x \right)=\dfrac{1}{1+{{\left( \sin x+\cos x \right)}^{2}}}\left( \cos x-\sin x \right)$
Now for f(x) to be increasing, we have
$f'\left( x \right)\ge 0$
Hence, we have
$\dfrac{1}{1+{{\left( \sin x+\cos x \right)}^{2}}}\left( \cos x-\sin x \right)\ge 0$
Since $\dfrac{1}{1+{{\left( \sin x+\cos x \right)}^{2}}}>0$ , we have
$\left( \cos x-\sin x \right)\ge 0$
Hence $\cos x>\sin x$
In the interval $\left( -\dfrac{\pi }{2},\dfrac{\pi }{4} \right)$ cosx>sinx.
Hence we have
In the interval $\left( -\dfrac{\pi }{2},\dfrac{\pi }{4} \right)$ f(x) is increasing.
Hence option [b] is correct.
Note: Alternatively, we have,
arc tanx is an increasing function. Hence arctan(cosx+sinx) is increasing whenever sinx+cosx is increasing.
Now sinx +cosx $=\dfrac{1}{\sqrt{2}}\left( \sin \left( x-\dfrac{\pi }{4} \right) \right)$
Now we know that sinx is an increasing function in the interval $\left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)$
Hence $\sin x+\cos x$ is increasing in the interval $\left( \dfrac{-\pi }{2}-\dfrac{\pi }{4},\dfrac{\pi }{2}-\dfrac{\pi }{4} \right)=\left( \dfrac{-3\pi }{4},\dfrac{\pi }{4} \right)$
Hence sinx + cosx is increasing in the interval $\left( \dfrac{-\pi }{2},\dfrac{\pi }{4} \right)$
Hence option [b] is correct.
Graph of arctan(sinx+cosx)

As is evident from the graph that f(x) is increasing in interval [A,B], where $\text{A=}\dfrac{-\pi }{2}$ and $\text{B=}\dfrac{\pi }{4}$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

