
The existence of the unique solution of the system for equations:
$
x + y + z = \lambda \\
5x - y + \mu z = 10 \\
2x + 3y - z = 6 \\
$
depends on
A. $\mu $ only
B. $\lambda $ only
C. $\lambda $ and $\mu $ both
D. neither $\lambda $ nor $\mu $
Answer
233.1k+ views
Hint: Express the given system of equations in matrix form and find the determinant of the coefficients of x,y and z.
We will write given equations in the matrix form as $A.X = B$
Where $A = \left( {\begin{array}{*{20}{c}}
1&1&1 \\
5&{ - 1}&\mu \\
2&3&{ - 1}
\end{array}} \right)$ , \[X = \left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right)\] and \[B = \left( {\begin{array}{*{20}{c}}
\lambda \\
{10} \\
6
\end{array}} \right)\]
Now, we will find determinant of A i.e. $\left| A \right|$
\[
\left| A \right| = \left( {\begin{array}{*{20}{c}}
1&1&1 \\
5&{ - 1}&\mu \\
2&3&{ - 1}
\end{array}} \right) \\
\left| A \right| = 1\left( {1 - 3\mu } \right) - 1\left( { - 5 - 2\mu } \right) + 1\left( {15 + 2} \right) \\
\left| A \right| = 1 - 3\mu + 5 + 2\mu + 17 \\
\left| A \right| = 23 - \mu \\
\]
From the above equation, we can see that the uniqueness of the system depends only on $\mu $.
$\therefore $Correct option is A.
Note: In a practical case, a system of linear equations will have a unique solution if the lines
representing the equations intersect each other at only one unique point i.e. the lines are
neither parallel nor coincident.
We will write given equations in the matrix form as $A.X = B$
Where $A = \left( {\begin{array}{*{20}{c}}
1&1&1 \\
5&{ - 1}&\mu \\
2&3&{ - 1}
\end{array}} \right)$ , \[X = \left( {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right)\] and \[B = \left( {\begin{array}{*{20}{c}}
\lambda \\
{10} \\
6
\end{array}} \right)\]
Now, we will find determinant of A i.e. $\left| A \right|$
\[
\left| A \right| = \left( {\begin{array}{*{20}{c}}
1&1&1 \\
5&{ - 1}&\mu \\
2&3&{ - 1}
\end{array}} \right) \\
\left| A \right| = 1\left( {1 - 3\mu } \right) - 1\left( { - 5 - 2\mu } \right) + 1\left( {15 + 2} \right) \\
\left| A \right| = 1 - 3\mu + 5 + 2\mu + 17 \\
\left| A \right| = 23 - \mu \\
\]
From the above equation, we can see that the uniqueness of the system depends only on $\mu $.
$\therefore $Correct option is A.
Note: In a practical case, a system of linear equations will have a unique solution if the lines
representing the equations intersect each other at only one unique point i.e. the lines are
neither parallel nor coincident.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

