
The equation of the line perpendicular to the line $ax+by+c=0$ and passing through $(a,b)$ is equal to
A. $bx-ay=0$
B. $bx+ay-2ab=0$
C. $bx+ay=0$
D. None of these
Answer
233.1k+ views
Hint: In this question, we are to find the equation of the perpendicular line for the given equation. This is obtained by using the property of the straight line which states that the product of slopes of two perpendicular lines is $-1$.
Formula used: The standard equation for a line is $ax+by+c=0$.
The equation of a line that has a slope $m$ and passing through the point $({{x}_{1}},{{y}_{1}})$ is
$y-{{y}_{1}}=m(x-{{x}_{1}})$
The slope of a line $ax+by+c=0$ is $m=\dfrac{-a}{b}$
The slopes of two lines that are perpendicular lines are given by the condition,
${{m}_{1}}\times {{m}_{2}}=-1$
Complete step by step solution: Given line is $ax+by+c=0\text{ }...(1)$
The slope of line (1) is
${{m}_{1}}=\dfrac{-a}{b}$
Then, the slope of the line that is perpendicular to (1) is
$\begin{align}
& {{m}_{1}}\times {{m}_{2}}=-1 \\
& \Rightarrow {{m}_{2}}=\dfrac{-1}{{{m}_{1}}} \\
& \Rightarrow {{m}_{2}}=\dfrac{-1}{\dfrac{-a}{b}}=\dfrac{b}{a} \\
\end{align}$
Then, the equation with slope $m=\dfrac{b}{a}$ and passes through a point $({{x}_{1}},{{y}_{1}})=(a,b)$ is
$\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-b=\dfrac{b}{a}(x-a) \\
& \Rightarrow ay-ab=bx-ab \\
& \therefore bx-ay=0 \\
\end{align}$
Thus, Option (A) is correct.
Note: Here we need to remember that, the required line is perpendicular to the given line. Here we can also solve this by applying a direct equation i.e., $bx-ay+k=0$ where $k$ is a constant. By substituting the given point through the line passes, we get the $k$ value. Then, the required equation is obtained.
Formula used: The standard equation for a line is $ax+by+c=0$.
The equation of a line that has a slope $m$ and passing through the point $({{x}_{1}},{{y}_{1}})$ is
$y-{{y}_{1}}=m(x-{{x}_{1}})$
The slope of a line $ax+by+c=0$ is $m=\dfrac{-a}{b}$
The slopes of two lines that are perpendicular lines are given by the condition,
${{m}_{1}}\times {{m}_{2}}=-1$
Complete step by step solution: Given line is $ax+by+c=0\text{ }...(1)$
The slope of line (1) is
${{m}_{1}}=\dfrac{-a}{b}$
Then, the slope of the line that is perpendicular to (1) is
$\begin{align}
& {{m}_{1}}\times {{m}_{2}}=-1 \\
& \Rightarrow {{m}_{2}}=\dfrac{-1}{{{m}_{1}}} \\
& \Rightarrow {{m}_{2}}=\dfrac{-1}{\dfrac{-a}{b}}=\dfrac{b}{a} \\
\end{align}$
Then, the equation with slope $m=\dfrac{b}{a}$ and passes through a point $({{x}_{1}},{{y}_{1}})=(a,b)$ is
$\begin{align}
& y-{{y}_{1}}=m(x-{{x}_{1}}) \\
& \Rightarrow y-b=\dfrac{b}{a}(x-a) \\
& \Rightarrow ay-ab=bx-ab \\
& \therefore bx-ay=0 \\
\end{align}$
Thus, Option (A) is correct.
Note: Here we need to remember that, the required line is perpendicular to the given line. Here we can also solve this by applying a direct equation i.e., $bx-ay+k=0$ where $k$ is a constant. By substituting the given point through the line passes, we get the $k$ value. Then, the required equation is obtained.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

