
The electronic configuration of bivalent europium and trivalent cerium are:
[Atomic number: Xe = 54, Ce = 58, Eu = 63]
A. \[[Xe]4{f^7}6{s^2}\, and \,\,[Xe]4{f^2}6{s^2}\]
B. \[[Xe]4{f^4}\, and \,\,[Xe]4{f^9}\]
C. \[[Xe]4{f^2}\, and \,\,[Xe]4{f^7}\]
D. \[[Xe]4{f^7}\, and \,\,[Xe]4{f^1}\]
Answer
233.1k+ views
Hint: To solve this question, first identify the electronic configuration of both the given elements. Then understand which ions of the given elements are required. After that, remove the corresponding number of electrons from the elements and write their final electronic configurations.
Complete Step-by-Step answer:
The atomic numbers of the given elements, Europium and Cerium are 63 and 58 respectively. From this, the electronic configuration of Europium and Cerium can be written as follows:
Electronic configuration of europium = Eu = \[[Xe]4{f^7}6{s^2}\]
Electronic configuration of cerium = Ce = \[[Xe]4{f^1}5{d^1}6{s^2}\]
Now the conditions that have been given to us are that the europium atom is made bivalent and the cerium atom is made trivalent. Making an atom trivalent means removing three electrons from the atom.
Hence, after removing 2 electrons from europium and 3 electrons from cerium, the electron configurations thus obtained are:
For Europium: \[[Xe]4{f^7}\]
For cerium: \[[Xe]4{f^1}\]
Hence, Option D is the correct option.
Note: While all lanthanides form relatively large trivalent (3+) ions, Eu and cerium (Ce) have additional valances, europium forms 2+ ions, and Ce forms 4+ ions, leading to chemical reaction differences in how these ions can partition versus the 3+ REEs.
Complete Step-by-Step answer:
The atomic numbers of the given elements, Europium and Cerium are 63 and 58 respectively. From this, the electronic configuration of Europium and Cerium can be written as follows:
Electronic configuration of europium = Eu = \[[Xe]4{f^7}6{s^2}\]
Electronic configuration of cerium = Ce = \[[Xe]4{f^1}5{d^1}6{s^2}\]
Now the conditions that have been given to us are that the europium atom is made bivalent and the cerium atom is made trivalent. Making an atom trivalent means removing three electrons from the atom.
Hence, after removing 2 electrons from europium and 3 electrons from cerium, the electron configurations thus obtained are:
For Europium: \[[Xe]4{f^7}\]
For cerium: \[[Xe]4{f^1}\]
Hence, Option D is the correct option.
Note: While all lanthanides form relatively large trivalent (3+) ions, Eu and cerium (Ce) have additional valances, europium forms 2+ ions, and Ce forms 4+ ions, leading to chemical reaction differences in how these ions can partition versus the 3+ REEs.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

For pure water A pH increases while pOH decreases with class 11 chemistry JEE_Main

Which of the following is most stable A Sn2+ B Ge2+ class 11 chemistry JEE_Main

Other Pages
NCERT Solutions For Class 11 Chemistry in Hindi Chapter 8 Redox Reactions (2025-26)

An ideal gas is at pressure P and temperature T in class 11 chemistry JEE_Main

In Carius method of estimation of halogens 015g of class 11 chemistry JEE_Main

Understanding Collisions: Types and Examples for Students

NCERT Solutions For Class 11 Chemistry in Hindi Chapter 1 Some Basic Concepts of Chemistry (2025-26)

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

