For pure water:
(A) pH increases while pOH decreases with rise in temperature
(B) pH decreases while pOH increases with rise in temperature
(C) Both pH and pOH decreases with rise in temperature
(D) Both pH and pOH increases with rise in temperature
Answer
Verified
119.7k+ views
Hint: pH and pOH are temperature dependent. When the temperature rises, the rate of ionization also changes accordingly. Similarly when the temperature will fall, there will be a change in both the pH and pOH values for pure water.
For pure water, at \[25^\circ \]c,\[\left[ {{H^ + }} \right] = {10^{ - 7}}\] and \[\left[ {O{H^ - }} \right] = {10^{ - 7}}\]
Complete Step By Step Answer:
At a temperature of \[100^\circ \]c, ${k_w}$ (that is ionic product of water) of Boiling Water is ${10^{ - 12}}$, then we know that
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {k_w}\]
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {10^{ - 12}}\]
We clearly know that \[\left[ {{H^ + }} \right] = \left[ {O{H^ - }} \right]\]
\[ \Rightarrow \]\[{\left[ {{H^ + }} \right]^2} = {10^{ - 12}}\]
\[ \Rightarrow \]\[\left[ {{H^ + }} \right] = {10^{ - 6.36}}\]
\[ \Rightarrow \]$pH = - log\left[ {{H^ + }} \right] = - \log \left( {{{10}^{ - 6}}} \right)$
\[ \Rightarrow \]$pH = 6$
At a temperature of \[50^\circ \]c, $p{K_w} = 13\cdot36$, (where $p{K_w}$ is the negative log of ${k_w}$) then we also know that
$pH + pOH = p{K_w}$
We are aware of the fact that $pH = pOH$
\[ \Rightarrow \]\[pH = \dfrac{{13.36}}{2} = 6\cdot68\]
So from the above whole discussion, we can conclude that when the temperature of pure water decreases, pH and pOH values of both will increase.
Or we can also say that pH and pOH values will decrease when the temperature of the pure water will increase.
The Correct Answer of the above question is option C. both pH and pOH decreases with rise in temperature.
Note: pH and pOH values are always the same for pure water. And both are temperature dependent. When the temperature rises, both values of pH and pOH decrease, while these values increase when the temperature of pure water falls down.
For pure water, at \[25^\circ \]c,\[\left[ {{H^ + }} \right] = {10^{ - 7}}\] and \[\left[ {O{H^ - }} \right] = {10^{ - 7}}\]
Complete Step By Step Answer:
At a temperature of \[100^\circ \]c, ${k_w}$ (that is ionic product of water) of Boiling Water is ${10^{ - 12}}$, then we know that
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {k_w}\]
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {10^{ - 12}}\]
We clearly know that \[\left[ {{H^ + }} \right] = \left[ {O{H^ - }} \right]\]
\[ \Rightarrow \]\[{\left[ {{H^ + }} \right]^2} = {10^{ - 12}}\]
\[ \Rightarrow \]\[\left[ {{H^ + }} \right] = {10^{ - 6.36}}\]
\[ \Rightarrow \]$pH = - log\left[ {{H^ + }} \right] = - \log \left( {{{10}^{ - 6}}} \right)$
\[ \Rightarrow \]$pH = 6$
At a temperature of \[50^\circ \]c, $p{K_w} = 13\cdot36$, (where $p{K_w}$ is the negative log of ${k_w}$) then we also know that
$pH + pOH = p{K_w}$
We are aware of the fact that $pH = pOH$
\[ \Rightarrow \]\[pH = \dfrac{{13.36}}{2} = 6\cdot68\]
So from the above whole discussion, we can conclude that when the temperature of pure water decreases, pH and pOH values of both will increase.
Or we can also say that pH and pOH values will decrease when the temperature of the pure water will increase.
The Correct Answer of the above question is option C. both pH and pOH decreases with rise in temperature.
Note: pH and pOH values are always the same for pure water. And both are temperature dependent. When the temperature rises, both values of pH and pOH decrease, while these values increase when the temperature of pure water falls down.
Recently Updated Pages
Types of Solutions - Solution in Chemistry
Difference Between Crystalline and Amorphous Solid
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main Chemistry Exam Pattern 2025
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs