
For pure water:
(A) pH increases while pOH decreases with rise in temperature
(B) pH decreases while pOH increases with rise in temperature
(C) Both pH and pOH decreases with rise in temperature
(D) Both pH and pOH increases with rise in temperature
Answer
153.9k+ views
Hint: pH and pOH are temperature dependent. When the temperature rises, the rate of ionization also changes accordingly. Similarly when the temperature will fall, there will be a change in both the pH and pOH values for pure water.
For pure water, at \[25^\circ \]c,\[\left[ {{H^ + }} \right] = {10^{ - 7}}\] and \[\left[ {O{H^ - }} \right] = {10^{ - 7}}\]
Complete Step By Step Answer:
At a temperature of \[100^\circ \]c, ${k_w}$ (that is ionic product of water) of Boiling Water is ${10^{ - 12}}$, then we know that
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {k_w}\]
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {10^{ - 12}}\]
We clearly know that \[\left[ {{H^ + }} \right] = \left[ {O{H^ - }} \right]\]
\[ \Rightarrow \]\[{\left[ {{H^ + }} \right]^2} = {10^{ - 12}}\]
\[ \Rightarrow \]\[\left[ {{H^ + }} \right] = {10^{ - 6.36}}\]
\[ \Rightarrow \]$pH = - log\left[ {{H^ + }} \right] = - \log \left( {{{10}^{ - 6}}} \right)$
\[ \Rightarrow \]$pH = 6$
At a temperature of \[50^\circ \]c, $p{K_w} = 13\cdot36$, (where $p{K_w}$ is the negative log of ${k_w}$) then we also know that
$pH + pOH = p{K_w}$
We are aware of the fact that $pH = pOH$
\[ \Rightarrow \]\[pH = \dfrac{{13.36}}{2} = 6\cdot68\]
So from the above whole discussion, we can conclude that when the temperature of pure water decreases, pH and pOH values of both will increase.
Or we can also say that pH and pOH values will decrease when the temperature of the pure water will increase.
The Correct Answer of the above question is option C. both pH and pOH decreases with rise in temperature.
Note: pH and pOH values are always the same for pure water. And both are temperature dependent. When the temperature rises, both values of pH and pOH decrease, while these values increase when the temperature of pure water falls down.
For pure water, at \[25^\circ \]c,\[\left[ {{H^ + }} \right] = {10^{ - 7}}\] and \[\left[ {O{H^ - }} \right] = {10^{ - 7}}\]
Complete Step By Step Answer:
At a temperature of \[100^\circ \]c, ${k_w}$ (that is ionic product of water) of Boiling Water is ${10^{ - 12}}$, then we know that
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {k_w}\]
\[\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {10^{ - 12}}\]
We clearly know that \[\left[ {{H^ + }} \right] = \left[ {O{H^ - }} \right]\]
\[ \Rightarrow \]\[{\left[ {{H^ + }} \right]^2} = {10^{ - 12}}\]
\[ \Rightarrow \]\[\left[ {{H^ + }} \right] = {10^{ - 6.36}}\]
\[ \Rightarrow \]$pH = - log\left[ {{H^ + }} \right] = - \log \left( {{{10}^{ - 6}}} \right)$
\[ \Rightarrow \]$pH = 6$
At a temperature of \[50^\circ \]c, $p{K_w} = 13\cdot36$, (where $p{K_w}$ is the negative log of ${k_w}$) then we also know that
$pH + pOH = p{K_w}$
We are aware of the fact that $pH = pOH$
\[ \Rightarrow \]\[pH = \dfrac{{13.36}}{2} = 6\cdot68\]
So from the above whole discussion, we can conclude that when the temperature of pure water decreases, pH and pOH values of both will increase.
Or we can also say that pH and pOH values will decrease when the temperature of the pure water will increase.
The Correct Answer of the above question is option C. both pH and pOH decreases with rise in temperature.
Note: pH and pOH values are always the same for pure water. And both are temperature dependent. When the temperature rises, both values of pH and pOH decrease, while these values increase when the temperature of pure water falls down.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

The stability of the following alkali metal chlorides class 11 chemistry JEE_Main

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

JEE Advanced 2025 Notes

Electrical Field of Charged Spherical Shell - JEE
