
The electric potential decreases uniformly from V to –V along x-axis in a coordinate system as we move from a ($ - {x_0}$, 0) to (${x_0}$, 0), then the electric field at the origin.
(A) Must to equal to $\dfrac{V}{{{x_0}}}$;
(B) May be equal to $\dfrac{V}{{{x_0}}}$;
(C) Must be greater than $\dfrac{V}{{{x_0}}};$
(D) May be less than $\dfrac{V}{{{x_0}}}$;
Answer
233.1k+ views
Hint: To answer this question we should be knowing the concept of electric field. Once we develop the formula we have to put the values in the expression from the question. After that we have to evaluate the expression to get the required answer.
Complete step by step answer:
We should know that V decreases uniformly.
The formula of electric field:
$E = \dfrac{{ - \Delta V}}{{\Delta h}}$
Now we have to put the values in the above expression and evaluate:
$
E = \dfrac{{ - (V - ( - V))}}{{( - {x_0} - {x_0})}} \\
\Rightarrow E = \dfrac{{ - 2{V_0}}}{{ - 2{x_0}}} = \dfrac{{{V_0}}}{{{x_0}}} \\
$
Hence we can say that the electric field at the origin Must be greater than $\dfrac{V}{{{x_0}}};$ so the correct answer is option C.
Note: We should know that electric potential is defined as the amount of work that is required to transfer a unit of charge from a specific reference point to a particular point inside the field, but in the absence of an acceleration. The unit of electric potential is volt or denoted by V.
It should also be known that the electric field is defined as the amount of electric force per unit charge. We should notice that the direction of the field that is taken is directed towards the force that would exert a positive test charge. The electric field is known to radially outward from a positive charge and then it is directed towards the radially transmitted negative point charge.
The formula of electric field is given by $E = kQ/{r^2}$ where k is the constant value.
We should not confuse between electric field and electric field intensity. Electric field intensity is defined as the strength of the electric field at any specific point. It is also known to be a vector quantity.
$E = kQ/{r^2}$
Complete step by step answer:
We should know that V decreases uniformly.
The formula of electric field:
$E = \dfrac{{ - \Delta V}}{{\Delta h}}$
Now we have to put the values in the above expression and evaluate:
$
E = \dfrac{{ - (V - ( - V))}}{{( - {x_0} - {x_0})}} \\
\Rightarrow E = \dfrac{{ - 2{V_0}}}{{ - 2{x_0}}} = \dfrac{{{V_0}}}{{{x_0}}} \\
$
Hence we can say that the electric field at the origin Must be greater than $\dfrac{V}{{{x_0}}};$ so the correct answer is option C.
Note: We should know that electric potential is defined as the amount of work that is required to transfer a unit of charge from a specific reference point to a particular point inside the field, but in the absence of an acceleration. The unit of electric potential is volt or denoted by V.
It should also be known that the electric field is defined as the amount of electric force per unit charge. We should notice that the direction of the field that is taken is directed towards the force that would exert a positive test charge. The electric field is known to radially outward from a positive charge and then it is directed towards the radially transmitted negative point charge.
The formula of electric field is given by $E = kQ/{r^2}$ where k is the constant value.
We should not confuse between electric field and electric field intensity. Electric field intensity is defined as the strength of the electric field at any specific point. It is also known to be a vector quantity.
$E = kQ/{r^2}$
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

