
The derivative of \[{\cos ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)\]w.r.t \[{\cot ^{ - 1}}\left( {\frac{{1 - 3{x^2}}}{{3x - {x^3}}}} \right)\].
(1) 1
(2) \[\frac{3}{2}\]
(3) \[\frac{2}{3}\]
(4) \[\frac{1}{2}\]
Answer
233.1k+ views
Hint: This question is done using the concept, that is, the substitution of the variables. Variables are substituted by another variable which will help to simplify the given expression.
Formula Used: 1) \[\begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\cos 2\theta }& = &{\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\cot 3\theta }& = &{\frac{{1 - 3{{\tan }^2}\theta }}{{3\tan \theta - {{\tan }^3}\theta }}}
\end{array}\]
Complete step by step Solution:
Whenever differentiation of any expression has to be found w.r.t another expression, there is used a formula that is,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
Let us assume that y and z are two expressions respectively which is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\cos }^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\cot }^{ - 1}}\left( {\frac{{1 - 3{x^2}}}{{3x - {x^3}}}} \right)}
\end{array}\]
Before moving forward, simplify these expressions. For this purpose, substitute x with another variable. Therefore, we can write.
\[ \Rightarrow \begin{array}{*{20}{c}}
x& = &{\tan }
\end{array}\theta \]
And
\[\begin{array}{*{20}{c}}
\theta & = &{{{\tan }^{ - 1}}x}
\end{array}\]
Now, put the value of x in the above expressions. We will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\cos }^{ - 1}}\left( {\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\cot }^{ - 1}}\left( {\frac{{1 - 3{{\tan }^2}\theta }}{{3\tan \theta - {{\tan }^3}\theta }}} \right)}
\end{array}\]
Some trigonometric formulas will now be used to reduce the above expression. So we know that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \cos 2\theta }& = &{\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\] and \[\begin{array}{*{20}{c}}
{\cot 3\theta }& = &{\frac{{1 - 3{{\tan }^2}\theta }}{{3\tan \theta - {{\tan }^3}\theta }}}
\end{array}\]
Therefore, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\cos }^{ - 1}}\cos 2\theta }
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\cot }^{ - 1}}\cot 3\theta }
\end{array}\]
And then,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{2\theta }
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{3\theta }
\end{array}\]
Now again substitute the value of the \[\theta \]. Therefore, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{2{{\tan }^{ - 1}}x}
\end{array}\] and \[\begin{array}{*{20}{c}}
{ \Rightarrow z}& = &{3{{\tan }^{ - 1}}x}
\end{array}\]
Now differentiate both the expressions with respect to the x. So, we will get it.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dx}}}& = &{2\frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}
\end{array}\]
Now we know that the differentiation of the \[{\tan ^{ - 1}}x\]is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}& = &{\frac{1}{{1 + {x^2}}}}
\end{array}\]
Therefore, from the above expression, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dx}}}& = &{\frac{2}{{1 + {x^2}}}}
\end{array}\] …………….. (a)
And now differentiate the expression z with respect to the x. So, we can write.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dz}}{{dx}}}& = &{\frac{3}{{1 + {x^2}}}}
\end{array}\]………….. (b)
According to the question, we will have to find the derivative of one expression with respect to another expression, so we will apply,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
Now from the equation (a) and (b), we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &{\frac{{\frac{2}{{1 + {x^2}}}}}{{\frac{3}{{1 + {x^2}}}}}}
\end{array}\]
Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &{\frac{2}{3}}
\end{array}\]
Now the final answer is \[\frac{2}{3}\]
Hence, the correct option is 3.
Note: Use all the fundamentals of trigonometry and differentiation to reach the final answer. First, simplify both expressions by substituting the variables and then differentiate both expressions with respect to the x.
Formula Used: 1) \[\begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\cos 2\theta }& = &{\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{\cot 3\theta }& = &{\frac{{1 - 3{{\tan }^2}\theta }}{{3\tan \theta - {{\tan }^3}\theta }}}
\end{array}\]
Complete step by step Solution:
Whenever differentiation of any expression has to be found w.r.t another expression, there is used a formula that is,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
Let us assume that y and z are two expressions respectively which is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\cos }^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\cot }^{ - 1}}\left( {\frac{{1 - 3{x^2}}}{{3x - {x^3}}}} \right)}
\end{array}\]
Before moving forward, simplify these expressions. For this purpose, substitute x with another variable. Therefore, we can write.
\[ \Rightarrow \begin{array}{*{20}{c}}
x& = &{\tan }
\end{array}\theta \]
And
\[\begin{array}{*{20}{c}}
\theta & = &{{{\tan }^{ - 1}}x}
\end{array}\]
Now, put the value of x in the above expressions. We will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\cos }^{ - 1}}\left( {\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right)}
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\cot }^{ - 1}}\left( {\frac{{1 - 3{{\tan }^2}\theta }}{{3\tan \theta - {{\tan }^3}\theta }}} \right)}
\end{array}\]
Some trigonometric formulas will now be used to reduce the above expression. So we know that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \cos 2\theta }& = &{\frac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}}
\end{array}\] and \[\begin{array}{*{20}{c}}
{\cot 3\theta }& = &{\frac{{1 - 3{{\tan }^2}\theta }}{{3\tan \theta - {{\tan }^3}\theta }}}
\end{array}\]
Therefore, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{{{\cos }^{ - 1}}\cos 2\theta }
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{{{\cot }^{ - 1}}\cot 3\theta }
\end{array}\]
And then,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{2\theta }
\end{array}\] and \[\begin{array}{*{20}{c}}
z& = &{3\theta }
\end{array}\]
Now again substitute the value of the \[\theta \]. Therefore, we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow y}& = &{2{{\tan }^{ - 1}}x}
\end{array}\] and \[\begin{array}{*{20}{c}}
{ \Rightarrow z}& = &{3{{\tan }^{ - 1}}x}
\end{array}\]
Now differentiate both the expressions with respect to the x. So, we will get it.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dx}}}& = &{2\frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}
\end{array}\]
Now we know that the differentiation of the \[{\tan ^{ - 1}}x\]is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{d({{\tan }^{ - 1}}x)}}{{dx}}}& = &{\frac{1}{{1 + {x^2}}}}
\end{array}\]
Therefore, from the above expression, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dx}}}& = &{\frac{2}{{1 + {x^2}}}}
\end{array}\] …………….. (a)
And now differentiate the expression z with respect to the x. So, we can write.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dz}}{{dx}}}& = &{\frac{3}{{1 + {x^2}}}}
\end{array}\]………….. (b)
According to the question, we will have to find the derivative of one expression with respect to another expression, so we will apply,
\[ \Rightarrow \begin{array}{*{20}{c}}
{\frac{{dy}}{{dz}}}& = &{\frac{{\left( {\frac{{dy}}{{dx}}} \right)}}{{\left( {\frac{{dz}}{{dx}}} \right)}}}
\end{array}\]
Now from the equation (a) and (b), we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &{\frac{{\frac{2}{{1 + {x^2}}}}}{{\frac{3}{{1 + {x^2}}}}}}
\end{array}\]
Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow \frac{{dy}}{{dz}}}& = &{\frac{2}{3}}
\end{array}\]
Now the final answer is \[\frac{2}{3}\]
Hence, the correct option is 3.
Note: Use all the fundamentals of trigonometry and differentiation to reach the final answer. First, simplify both expressions by substituting the variables and then differentiate both expressions with respect to the x.
Recently Updated Pages
The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

