
The degree of dissociation of $Ca{{(N{{O}_{3}})}_{2}}$ in a dilute aqueous solution containing 7g of the salt per 100g of water at ${{100}^{{}^\circ }}C$ is 70%. If the vapour pressure of water at ${{100}^{{}^\circ }}C$ is 760mm, calculate the vapour pressure of the solution.
(A) 378.5mm
(B) 492.8mm
(C) 746.10mm
(D) 985.6mm
Answer
233.1k+ views
Hint: The dissociation degree is the fraction of original solute molecules that have dissociated. It is usually indicated by the Greek symbol $\alpha $ . More accurately, the degree of dissociation refers to the amount of solute dissociated into ions or radicals per mole.
Complete step by step answer:
Given is the degree of dissociation of $Ca{{(N{{O}_{3}})}_{2}}$, is 70%.
Firstly we will calculate the moles of $Ca{{(N{{O}_{3}})}_{2}}$ and water.
Molar mass of $Ca{{(N{{O}_{3}})}_{2}}$ is 164g/mol and mass of $Ca{{(N{{O}_{3}})}_{2}}$ is 7g. Therefore, moles will be,
\[moles=\dfrac{7}{164}=0.0427moles\]
Molar mass of water is 18g/mol and mass of water is 100g. Therefore, moles will be,
\[moles=\dfrac{100}{18}=5.56moles\]
Now the mole fraction (X) of calcium nitrate will be,
\[\text{mole fraction=}\dfrac{0.0427}{0.0427+5.56}=0.00762\]
The degree of dissociation $\alpha $ =70 % =0.7
The van’t hoff factor will be,
\[\begin{align}
& i=[1+(n-1)\alpha ] \\
& i=[1+(3-1)0.7] \\
& i=2.4 \\
\end{align}\]
The relative lowering of the vapour pressure, \[\dfrac{{{P}^{o}}-P}{{{P}^{o}}}=iX\], where ${{P}^{o}}$ is vapour pressure of the water and P is the vapour pressure of the solution.
Substituting the values of pressure, mole fraction and van’t hoff factor, we get,
\[\begin{align}
& \dfrac{760-P}{760}=2.4\times 0.00762=0.018~ \\
& 760-P=13.9 \\
& P=746.10mm \\
\end{align}\]
Therefore, the correct answer is the (C) option.
Note: The van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1.
Complete step by step answer:
Given is the degree of dissociation of $Ca{{(N{{O}_{3}})}_{2}}$, is 70%.
Firstly we will calculate the moles of $Ca{{(N{{O}_{3}})}_{2}}$ and water.
Molar mass of $Ca{{(N{{O}_{3}})}_{2}}$ is 164g/mol and mass of $Ca{{(N{{O}_{3}})}_{2}}$ is 7g. Therefore, moles will be,
\[moles=\dfrac{7}{164}=0.0427moles\]
Molar mass of water is 18g/mol and mass of water is 100g. Therefore, moles will be,
\[moles=\dfrac{100}{18}=5.56moles\]
Now the mole fraction (X) of calcium nitrate will be,
\[\text{mole fraction=}\dfrac{0.0427}{0.0427+5.56}=0.00762\]
The degree of dissociation $\alpha $ =70 % =0.7
The van’t hoff factor will be,
\[\begin{align}
& i=[1+(n-1)\alpha ] \\
& i=[1+(3-1)0.7] \\
& i=2.4 \\
\end{align}\]
The relative lowering of the vapour pressure, \[\dfrac{{{P}^{o}}-P}{{{P}^{o}}}=iX\], where ${{P}^{o}}$ is vapour pressure of the water and P is the vapour pressure of the solution.
Substituting the values of pressure, mole fraction and van’t hoff factor, we get,
\[\begin{align}
& \dfrac{760-P}{760}=2.4\times 0.00762=0.018~ \\
& 760-P=13.9 \\
& P=746.10mm \\
\end{align}\]
Therefore, the correct answer is the (C) option.
Note: The van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

For pure water A pH increases while pOH decreases with class 11 chemistry JEE_Main

Which of the following is most stable A Sn2+ B Ge2+ class 11 chemistry JEE_Main

Other Pages
NCERT Solutions For Class 11 Chemistry in Hindi Chapter 8 Redox Reactions (2025-26)

An ideal gas is at pressure P and temperature T in class 11 chemistry JEE_Main

In Carius method of estimation of halogens 015g of class 11 chemistry JEE_Main

Understanding Collisions: Types and Examples for Students

NCERT Solutions For Class 11 Chemistry in Hindi Chapter 1 Some Basic Concepts of Chemistry (2025-26)

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

