
The count rate of a Geiger- Muller counter for the radiation of a radioactive material of half-life of 30 minutes decreases to $5s^{-1}$ after 2 hours. The initial count rate was
A. $25 s^{-1}$
B. $20 s^{-1}$
C. $80 s^{-1}$
D. $625 s^{-1}$
Answer
218.4k+ views
Hint: The Geiger-Muller counter is used for measuring the radiation emitted by a radioactive material. Half-life of the material is also given. After 2 hrs it rate decreases to $5s^{-1}$. We have to find the initial rate using the given data.
Formula used:
We can use the same formula connecting amount of the original sample, remaining amount of the sample, half-life and time taken for decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $t$ time or final rate.
$N_{0}$ is the original amount of sample or initial rate.
$\mathrm{T}$ is the half-life of the radioactive material.
Complete answer:
We have a radioactive material of half-life 30 minutes. And the count rate of Gieger-Muller counter
decreases to $5 s^{-1}$ after 2 hrs. With these data we have to find the initial rate shown in
Geiger-Muller counter.
In order to find the initial rate, we have the equation connecting all the known factors in question as:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Here we have to find $N_{0}$ that is the initial count rate.
Final count rate, $N=5 s^{-1}$
Half-life of the radioactive material, $T=30$ minutes
Time taken, $t=2 h r s=120$ minutes
On substituting the values in the equation, we get:
$\dfrac{5}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{120}{30}}$
Therefore, initial count rate is:
$N_{0}=\dfrac{5}{\left(\dfrac{1}{2}\right)^{4}}=5 \times 2^{4}=16 \times 5=80 s^{-1}$
Thus, option (D) is correct.
Additional information: The Geiger-Muller counter is an instrument which measures and detects ionization produced by radiation. It can count particles at rates up to 10,000 per second. Radioactive particles produce radiation when it decays. So, it can also be used to measure decay of radioactive materials.
Note: Amount here is taken as the rate since the rate is given in the question. Radioactivity measurement means how much of radioactivity has decayed. So, we can replace the amount with the rate. Don’t forget to convert the unit of time before calculating.
Formula used:
We can use the same formula connecting amount of the original sample, remaining amount of the sample, half-life and time taken for decay:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Where $\mathrm{N}$ is the amount of sample remaining after $t$ time or final rate.
$N_{0}$ is the original amount of sample or initial rate.
$\mathrm{T}$ is the half-life of the radioactive material.
Complete answer:
We have a radioactive material of half-life 30 minutes. And the count rate of Gieger-Muller counter
decreases to $5 s^{-1}$ after 2 hrs. With these data we have to find the initial rate shown in
Geiger-Muller counter.
In order to find the initial rate, we have the equation connecting all the known factors in question as:
$\dfrac{N}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{t}{T}}$
Here we have to find $N_{0}$ that is the initial count rate.
Final count rate, $N=5 s^{-1}$
Half-life of the radioactive material, $T=30$ minutes
Time taken, $t=2 h r s=120$ minutes
On substituting the values in the equation, we get:
$\dfrac{5}{N_{0}}=\left(\dfrac{1}{2}\right)^{\dfrac{120}{30}}$
Therefore, initial count rate is:
$N_{0}=\dfrac{5}{\left(\dfrac{1}{2}\right)^{4}}=5 \times 2^{4}=16 \times 5=80 s^{-1}$
Thus, option (D) is correct.
Additional information: The Geiger-Muller counter is an instrument which measures and detects ionization produced by radiation. It can count particles at rates up to 10,000 per second. Radioactive particles produce radiation when it decays. So, it can also be used to measure decay of radioactive materials.
Note: Amount here is taken as the rate since the rate is given in the question. Radioactivity measurement means how much of radioactivity has decayed. So, we can replace the amount with the rate. Don’t forget to convert the unit of time before calculating.
Recently Updated Pages
Young’s Double Slit Experiment Derivation Explained

Wheatstone Bridge Explained: Working, Formula & Uses

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

