
The angle of elevation of the sun when the length of the shadow of pole is $\sqrt 3 $
times the height of the pole is
\[
(A){\text{ 3}}{{\text{0}}^0} \\
(B){\text{ 4}}{{\text{5}}^0} \\
(C){\text{ 6}}{{\text{0}}^0} \\
(D){\text{ 1}}{{\text{5}}^0} \\
\]
Answer
232.5k+ views
Hint: Draw figure and then use trigonometry identity $\cot \theta = \dfrac{{Base}}{{Perpendicular}}$.

Let AB be the height of the pole and BC be its shadow.
As, we are given the ratio of the length of the pole and its shadow.
Let the height of the pole be AB$ = h$ units.
So, the length of its shadow will be BC $ = \sqrt 3 h$ units.
So, we must find an angle of elevation.
Now, we can only use the given condition.
So, the best way to find the angle of elevation using trigonometric formulas.
So, solving using given conditions.
Let, $\angle ACB = \theta $.
And , \[\theta \] will be the angle of elevation of sun
And we know that $\cot \theta = \dfrac{{Base}}{{Perpendicular}}$.
Here, the base will be BC.
And, perpendicular will be AB.
So, here putting the value of base and perpendicular in $\cot \theta $ we will get.
$\cot \theta = \dfrac{{BC}}{{AB}} = \dfrac{{\sqrt 3 h}}{h} = \sqrt 3 $
So, from the above equation we can write,
\[\theta = {\cot ^{ - 1}}\left( {\sqrt 3 } \right)\] (1)
Using inverse trigonometric formulas. We can say that $\theta = {30^0}$
Hence, the angle of elevation of the sun will be ${30^0}$.
Hence, the correct Option will be A.
Note: Whenever we come up with these types of problems, first we should draw the figure according to the given conditions in question, then we will use the trigonometric functions to get the angle of elevation which will be the easiest and efficient method. And we should remember that object and its shadow are always perpendicular to each other.

Let AB be the height of the pole and BC be its shadow.
As, we are given the ratio of the length of the pole and its shadow.
Let the height of the pole be AB$ = h$ units.
So, the length of its shadow will be BC $ = \sqrt 3 h$ units.
So, we must find an angle of elevation.
Now, we can only use the given condition.
So, the best way to find the angle of elevation using trigonometric formulas.
So, solving using given conditions.
Let, $\angle ACB = \theta $.
And , \[\theta \] will be the angle of elevation of sun
And we know that $\cot \theta = \dfrac{{Base}}{{Perpendicular}}$.
Here, the base will be BC.
And, perpendicular will be AB.
So, here putting the value of base and perpendicular in $\cot \theta $ we will get.
$\cot \theta = \dfrac{{BC}}{{AB}} = \dfrac{{\sqrt 3 h}}{h} = \sqrt 3 $
So, from the above equation we can write,
\[\theta = {\cot ^{ - 1}}\left( {\sqrt 3 } \right)\] (1)
Using inverse trigonometric formulas. We can say that $\theta = {30^0}$
Hence, the angle of elevation of the sun will be ${30^0}$.
Hence, the correct Option will be A.
Note: Whenever we come up with these types of problems, first we should draw the figure according to the given conditions in question, then we will use the trigonometric functions to get the angle of elevation which will be the easiest and efficient method. And we should remember that object and its shadow are always perpendicular to each other.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

