
The adjoint of $\left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \\ \end{matrix} \right]$ is [RPET 1993]
A. $\left[ \begin{matrix} 3 & -9 & -5 \\ -4 & 1 & 3 \\ -5 & 4 & 1 \\ \end{matrix} \right]$
B. $\left[ \begin{matrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \\ \end{matrix} \right]$
C. $\left[ \begin{matrix} -3 & \,\,4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1 \\ \end{matrix} \right]$
D. None of these
Answer
232.8k+ views
Hint:
When the co-factor members of a matrix are transposed, the adjoint of the matrix is produced. Here We will first evaluate the cofactor of every element of the matrix. By transposing the co-factor elements of the given matrix, one can obtain the adjoint of a matrix.
Formula Used:
Adjoint of $3 \times 3$ Matrix is given by:
$adjA=\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{22} & A_{33} \end{bmatrix}^T=\begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$
Where $\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{22} & A_{33} \end{bmatrix}$ is cofactor matrix of $A$.
Cofactor of the element is given by:
$C_{ij}=(-1)^{i+j}det(M_{ij})$
here, $det(M_{ij})$ is the minor of $a_{ij}$
Complete step-by-step solution:
Let $A=\left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \\ \end{matrix} \right]$
Finding the cofactors of every element of matrix $A$:
$C_{11}=(-1)^{1+1}\begin{vmatrix}2 & -3 \\-1 & 3 \end{vmatrix}\\
\Rightarrow C_{11}=3\\
C_{12}=(-1)^{1+2}\begin{vmatrix}1 & -3 \\2 & 3 \end{vmatrix}\\
\Rightarrow C_{12}=-9\\
C_{13}=(-1)^{1+3}\begin{vmatrix}1 & 2 \\2 & -1 \end{vmatrix}\\
\Rightarrow C_{13}=-5$
$C_{21}=(-1)^{2+1}\begin{vmatrix}1 & 1 \\-1 & 3 \end{vmatrix}\\
\Rightarrow C_{21}=-4\\
C_{22}=(-1)^{2+2}\begin{vmatrix}1 & 1 \\2 & 3 \end{vmatrix}\\
\Rightarrow C_{22}=1\\
C_{23}=(-1)^{2+3}\begin{vmatrix}1 & 1 \\2 & -1 \end{vmatrix}\\
\Rightarrow C_{23}=3$
$C_{31}=(-1)^{3+1}\begin{vmatrix}1 & 1 \\2 & -3 \end{vmatrix}\\
\Rightarrow C_{31}=-5\\
C_{32}=(-1)^{3+2}\begin{vmatrix}1 & 1 \\1 & 3 \end{vmatrix}\\
\Rightarrow C_{32}=4\\
C_{33}=(-1)^{3+3}\begin{vmatrix}1 & 1 \\1 & 2 \end{vmatrix}\\
\Rightarrow C_{33}=1$
Take the transposition of the cofactor matrix to determine the adjoint.
So, the cofactor matrix $C=\left[ \begin{matrix} 3 & -9 & -5 \\ -4 & 1 & 3 \\ -5 & 4 & 1 \\ \end{matrix} \right]$
Therefore,
$Adj A=C^T\\
Adj\,(A)=\left[ \begin{matrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \\ \end{matrix} \right]$
So, option is B correct.
Note:
Remember the adjoint of a matrix is created when the co-factor matrix is transposed. The determinant obtained by removing the row and column in which an element appears in a matrix is known as the minor of that element. A cofactor is a number that is obtained by removing a specific element's row and column in the shape of a square or rectangle. Depending on the element's position, a positive or negative sign comes before the cofactor.
When the co-factor members of a matrix are transposed, the adjoint of the matrix is produced. Here We will first evaluate the cofactor of every element of the matrix. By transposing the co-factor elements of the given matrix, one can obtain the adjoint of a matrix.
Formula Used:
Adjoint of $3 \times 3$ Matrix is given by:
$adjA=\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{22} & A_{33} \end{bmatrix}^T=\begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$
Where $\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{22} & A_{33} \end{bmatrix}$ is cofactor matrix of $A$.
Cofactor of the element is given by:
$C_{ij}=(-1)^{i+j}det(M_{ij})$
here, $det(M_{ij})$ is the minor of $a_{ij}$
Complete step-by-step solution:
Let $A=\left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \\ \end{matrix} \right]$
Finding the cofactors of every element of matrix $A$:
$C_{11}=(-1)^{1+1}\begin{vmatrix}2 & -3 \\-1 & 3 \end{vmatrix}\\
\Rightarrow C_{11}=3\\
C_{12}=(-1)^{1+2}\begin{vmatrix}1 & -3 \\2 & 3 \end{vmatrix}\\
\Rightarrow C_{12}=-9\\
C_{13}=(-1)^{1+3}\begin{vmatrix}1 & 2 \\2 & -1 \end{vmatrix}\\
\Rightarrow C_{13}=-5$
$C_{21}=(-1)^{2+1}\begin{vmatrix}1 & 1 \\-1 & 3 \end{vmatrix}\\
\Rightarrow C_{21}=-4\\
C_{22}=(-1)^{2+2}\begin{vmatrix}1 & 1 \\2 & 3 \end{vmatrix}\\
\Rightarrow C_{22}=1\\
C_{23}=(-1)^{2+3}\begin{vmatrix}1 & 1 \\2 & -1 \end{vmatrix}\\
\Rightarrow C_{23}=3$
$C_{31}=(-1)^{3+1}\begin{vmatrix}1 & 1 \\2 & -3 \end{vmatrix}\\
\Rightarrow C_{31}=-5\\
C_{32}=(-1)^{3+2}\begin{vmatrix}1 & 1 \\1 & 3 \end{vmatrix}\\
\Rightarrow C_{32}=4\\
C_{33}=(-1)^{3+3}\begin{vmatrix}1 & 1 \\1 & 2 \end{vmatrix}\\
\Rightarrow C_{33}=1$
Take the transposition of the cofactor matrix to determine the adjoint.
So, the cofactor matrix $C=\left[ \begin{matrix} 3 & -9 & -5 \\ -4 & 1 & 3 \\ -5 & 4 & 1 \\ \end{matrix} \right]$
Therefore,
$Adj A=C^T\\
Adj\,(A)=\left[ \begin{matrix} 3 & -4 & -5 \\ -9 & 1 & 4 \\ -5 & 3 & 1 \\ \end{matrix} \right]$
So, option is B correct.
Note:
Remember the adjoint of a matrix is created when the co-factor matrix is transposed. The determinant obtained by removing the row and column in which an element appears in a matrix is known as the minor of that element. A cofactor is a number that is obtained by removing a specific element's row and column in the shape of a square or rectangle. Depending on the element's position, a positive or negative sign comes before the cofactor.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

