
Solve the following Integral.
\[\int {\sqrt {1 - \sin 2x} \cdot dx} \]
Answer
598.8k+ views
Hint- In order to solve the given integral, first we will simplify the given trigonometric term with the help of trigonometric identity to bring it in simpler form of sine and cosine before integrating it. We will use these two identities-
$
{\sin ^2}x + {\cos ^2}x = 1 \\
\sin 2x = 2\sin x\cos x \\
$
Complete step-by-step answer:
We have to find out the value of \[\int {\sqrt {1 - \sin 2x} \cdot dx} \]
Let us assume our function $f\left( x \right) = \sqrt {1 - \sin 2x} $
Now let us simplify the function using trigonometric identity.
$
{\sin ^2}x + {\cos ^2}x = 1 \\
\sin 2x = 2\sin x\cos x \\
$
Using the identities in the function we get:
\[
f\left( x \right) = \sqrt {\left( 1 \right) - \left( {\sin 2x} \right)} \\
f\left( x \right) = \sqrt {\left( {{{\sin }^2}x + {{\cos }^2}x} \right) - \left( {2\sin x\cos x} \right)} \\
\]
Now let us use algebraic identity to solve the term.
$\because {a^2} + {b^2} - 2ab = {\left( {a - b} \right)^2}$
Using the algebraic identity in the given function we get
$
\therefore f\left( x \right) = \sqrt {{{\left( {\sin x - \cos x} \right)}^2}} \\
\Rightarrow f\left( x \right) = \left( {\sin x - \cos x} \right) \\
$
So, now we will find the integration
$
\Rightarrow \int {f\left( x \right)dx} = \int {\left( {\sin x - \cos x} \right)dx} \\
\Rightarrow \int {f\left( x \right)dx} = \int {\left( {\sin x} \right)dx} - \int {\left( {\cos x} \right)dx} \\
$
As we know the basic rules for integration of sine and cosine term are given by:
$
\int {\left( {\sin x} \right)dx} = - \cos x \\
\int {\left( {\cos x} \right)dx} = \sin x \\
$
Using the same in the integral we get:
$
\Rightarrow \int {f\left( x \right)dx} = \int {\left( {\sin x} \right)dx} - \int {\left( {\cos x} \right)dx} \\
\therefore \int {f\left( x \right)dx} = - \cos x - \sin x + c \\
$
Or \[\int {\sqrt {1 - \sin 2x} \cdot dx} = - \cos x - \sin x + c\]
Hence, the result of integration is \[\int {\sqrt {1 - \sin 2x} \cdot dx} = - \cos x - \sin x + c\]
Note- These types of problems cannot be solved directly, the basic idea for solving such problems is to simplify the term to be integrated before integration by the use of algebraic as well as trigonometric identities. Students must remember such identities, some of them are mentioned above.
$
{\sin ^2}x + {\cos ^2}x = 1 \\
\sin 2x = 2\sin x\cos x \\
$
Complete step-by-step answer:
We have to find out the value of \[\int {\sqrt {1 - \sin 2x} \cdot dx} \]
Let us assume our function $f\left( x \right) = \sqrt {1 - \sin 2x} $
Now let us simplify the function using trigonometric identity.
$
{\sin ^2}x + {\cos ^2}x = 1 \\
\sin 2x = 2\sin x\cos x \\
$
Using the identities in the function we get:
\[
f\left( x \right) = \sqrt {\left( 1 \right) - \left( {\sin 2x} \right)} \\
f\left( x \right) = \sqrt {\left( {{{\sin }^2}x + {{\cos }^2}x} \right) - \left( {2\sin x\cos x} \right)} \\
\]
Now let us use algebraic identity to solve the term.
$\because {a^2} + {b^2} - 2ab = {\left( {a - b} \right)^2}$
Using the algebraic identity in the given function we get
$
\therefore f\left( x \right) = \sqrt {{{\left( {\sin x - \cos x} \right)}^2}} \\
\Rightarrow f\left( x \right) = \left( {\sin x - \cos x} \right) \\
$
So, now we will find the integration
$
\Rightarrow \int {f\left( x \right)dx} = \int {\left( {\sin x - \cos x} \right)dx} \\
\Rightarrow \int {f\left( x \right)dx} = \int {\left( {\sin x} \right)dx} - \int {\left( {\cos x} \right)dx} \\
$
As we know the basic rules for integration of sine and cosine term are given by:
$
\int {\left( {\sin x} \right)dx} = - \cos x \\
\int {\left( {\cos x} \right)dx} = \sin x \\
$
Using the same in the integral we get:
$
\Rightarrow \int {f\left( x \right)dx} = \int {\left( {\sin x} \right)dx} - \int {\left( {\cos x} \right)dx} \\
\therefore \int {f\left( x \right)dx} = - \cos x - \sin x + c \\
$
Or \[\int {\sqrt {1 - \sin 2x} \cdot dx} = - \cos x - \sin x + c\]
Hence, the result of integration is \[\int {\sqrt {1 - \sin 2x} \cdot dx} = - \cos x - \sin x + c\]
Note- These types of problems cannot be solved directly, the basic idea for solving such problems is to simplify the term to be integrated before integration by the use of algebraic as well as trigonometric identities. Students must remember such identities, some of them are mentioned above.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

