
What is the solution of the differential equation \[\left( {{x^2} - y{x^2}} \right)\dfrac{{dy}}{{dx}} + {y^2} + x{y^2} = 0\]?
A. \[\log \left( {\dfrac{x}{y}} \right) = \dfrac{1}{x} + \dfrac{1}{y} + c\]
B. \[\log \left( {\dfrac{y}{x}} \right) = \dfrac{1}{x} + \dfrac{1}{y} + c\]
C. \[\log \left( {xy} \right) = \dfrac{1}{x} + \dfrac{1}{y} + c\]
D. \[\log \left( {xy} \right) + \dfrac{1}{x} + \dfrac{1}{y} = c\]
Answer
232.8k+ views
Hint: First we separate all variables of the differential equation. Then take integration operations on both sides of the equation and by using integration formulas solve it.
Formula used:
Integration formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
\[\int {\dfrac{1}{{{x^2}}}dx} = - \dfrac{1}{x} + c\]
Complete step by step solution:
Given differential equation is \[\left( {{x^2} - y{x^2}} \right)\dfrac{{dy}}{{dx}} + {y^2} + x{y^2} = 0\].
Now we will separate the variable of the differential equation:
\[\left( {{x^2} - y{x^2}} \right)\dfrac{{dy}}{{dx}} = - {y^2}\left( {1 + x} \right)\]
\[ \Rightarrow {x^2}\left( {1 - y} \right)\dfrac{{dy}}{{dx}} = - {y^2}\left( {1 + x} \right)\]
Divide both sides by \[{x^2}{y^2}\]
\[ \Rightarrow \dfrac{{{x^2}\left( {1 - y} \right)}}{{{x^2}{y^2}}}\dfrac{{dy}}{{dx}} = - \dfrac{{{y^2}\left( {1 + x} \right)}}{{{x^2}{y^2}}}\]
Cancel out same terms from the denominator and numerator:
\[ \Rightarrow \dfrac{{{x^2}\left( {1 - y} \right)}}{{{x^2}{y^2}}}\dfrac{{dy}}{{dx}} = - \dfrac{{{y^2}\left( {1 + x} \right)}}{{{x^2}{y^2}}}\]
\[ \Rightarrow \dfrac{{\left( {1 - y} \right)}}{{{y^2}}}\dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right)}}{{{x^2}}}\]
\[ \Rightarrow \dfrac{{\left( {1 - y} \right)}}{{{y^2}}}dy = - \dfrac{{\left( {1 + x} \right)}}{{{x^2}}}dx\]
Break it into terms:
\[ \Rightarrow \left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{y}} \right)dy = - \left( {\dfrac{1}{{{x^2}}} + \dfrac{1}{x}} \right)dx\]
\[ \Rightarrow \left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{y}} \right)dy + \left( {\dfrac{1}{{{x^2}}} + \dfrac{1}{x}} \right)dx = 0\]
Taking integration on both sides:
\[ \Rightarrow \int {\dfrac{1}{{{y^2}}}dy} - \int {\dfrac{1}{y}dy} + \int {\dfrac{1}{{{x^2}}}dx} + \int {\dfrac{1}{x}dx} = 0\]
Applying integration formula:
\[ \Rightarrow - \dfrac{1}{y} - \log y - \dfrac{1}{x} + \log x = c\]
Rewrite the above equation:
\[ \Rightarrow \log x - \log y = c + \dfrac{1}{x} + \dfrac{1}{y}\]
Applying quotient formula of logarithm:
\[ \Rightarrow \log \left( {\dfrac{x}{y}} \right) = c + \dfrac{1}{x} + \dfrac{1}{y}\]
Hence option A is the correct option.
Note: Students often do mistake to integrate \[\int {\dfrac{1}{{{x^2}}}dx} \].They apply the formula \[\int {\dfrac{1}{{{x^2}}}dx} = \dfrac{1}{x} + c\] which is incorrect formula. The correct formula is \[\int {\dfrac{1}{{{x^2}}}dx} = - \dfrac{1}{x} + c\].
Formula used:
Integration formula:
\[\int {\dfrac{1}{x}dx} = \log x + c\]
\[\int {\dfrac{1}{{{x^2}}}dx} = - \dfrac{1}{x} + c\]
Complete step by step solution:
Given differential equation is \[\left( {{x^2} - y{x^2}} \right)\dfrac{{dy}}{{dx}} + {y^2} + x{y^2} = 0\].
Now we will separate the variable of the differential equation:
\[\left( {{x^2} - y{x^2}} \right)\dfrac{{dy}}{{dx}} = - {y^2}\left( {1 + x} \right)\]
\[ \Rightarrow {x^2}\left( {1 - y} \right)\dfrac{{dy}}{{dx}} = - {y^2}\left( {1 + x} \right)\]
Divide both sides by \[{x^2}{y^2}\]
\[ \Rightarrow \dfrac{{{x^2}\left( {1 - y} \right)}}{{{x^2}{y^2}}}\dfrac{{dy}}{{dx}} = - \dfrac{{{y^2}\left( {1 + x} \right)}}{{{x^2}{y^2}}}\]
Cancel out same terms from the denominator and numerator:
\[ \Rightarrow \dfrac{{{x^2}\left( {1 - y} \right)}}{{{x^2}{y^2}}}\dfrac{{dy}}{{dx}} = - \dfrac{{{y^2}\left( {1 + x} \right)}}{{{x^2}{y^2}}}\]
\[ \Rightarrow \dfrac{{\left( {1 - y} \right)}}{{{y^2}}}\dfrac{{dy}}{{dx}} = - \dfrac{{\left( {1 + x} \right)}}{{{x^2}}}\]
\[ \Rightarrow \dfrac{{\left( {1 - y} \right)}}{{{y^2}}}dy = - \dfrac{{\left( {1 + x} \right)}}{{{x^2}}}dx\]
Break it into terms:
\[ \Rightarrow \left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{y}} \right)dy = - \left( {\dfrac{1}{{{x^2}}} + \dfrac{1}{x}} \right)dx\]
\[ \Rightarrow \left( {\dfrac{1}{{{y^2}}} - \dfrac{1}{y}} \right)dy + \left( {\dfrac{1}{{{x^2}}} + \dfrac{1}{x}} \right)dx = 0\]
Taking integration on both sides:
\[ \Rightarrow \int {\dfrac{1}{{{y^2}}}dy} - \int {\dfrac{1}{y}dy} + \int {\dfrac{1}{{{x^2}}}dx} + \int {\dfrac{1}{x}dx} = 0\]
Applying integration formula:
\[ \Rightarrow - \dfrac{1}{y} - \log y - \dfrac{1}{x} + \log x = c\]
Rewrite the above equation:
\[ \Rightarrow \log x - \log y = c + \dfrac{1}{x} + \dfrac{1}{y}\]
Applying quotient formula of logarithm:
\[ \Rightarrow \log \left( {\dfrac{x}{y}} \right) = c + \dfrac{1}{x} + \dfrac{1}{y}\]
Hence option A is the correct option.
Note: Students often do mistake to integrate \[\int {\dfrac{1}{{{x^2}}}dx} \].They apply the formula \[\int {\dfrac{1}{{{x^2}}}dx} = \dfrac{1}{x} + c\] which is incorrect formula. The correct formula is \[\int {\dfrac{1}{{{x^2}}}dx} = - \dfrac{1}{x} + c\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

