
Prove the given expression, \[\cos [ta{{n}^{-1}}\{sin(co{{t}^{-1}}x)\}]=\sqrt{\dfrac{1+{{x}^{2}}}{2+{{x}^{2}}}}\] .
Answer
608.4k+ views
Hint: In this question, we have multiple trigonometric functions. So we have to do trigonometric conversion multiple times. We have inverse tan function and inverse cot function. Assume, \[\theta ={{\cot }^{-1}}x\] and then transform \[\cot \theta \] into \[\sin \theta \] . Also assume \[\beta ={{\tan }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right)\] and then transform \[\tan \beta \] into \[\cos \beta \] . Now, it can be solved easily.
Complete step-by-step solution -
Solve this question, step by step.
Treat \[\sin (co{{t}^{-1}}x)\] as the first part and then simplify this.
So, first of all, we have to solve \[\sin (co{{t}^{-1}}x)\].
Let us assume,
\[\theta ={{\cot }^{-1}}x\]
\[\Rightarrow \cot \theta =x\]…………..(1)
We have, \[\cot \theta =\dfrac{\text{base}}{\text{Height}} \],
Base = x,
Height= 1,
Using Pythagoras theorem Hypotenuse =\[\sqrt{{{\left(\text{height} \right)}^{2}}+{{\left(\text{Base} \right)}^{2}}}\], we get
Hypotenuse= \[\sqrt{1+{{x}^{2}}}\]
\[\sin \theta =\dfrac{\text{height}}{\text{hypotenuse}}\]
\[\sin \theta =\dfrac{1}{\sqrt{1+{{x}^{2}}}}\]
\[\Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right)\]………………(2)
According to the question, we have \[\cos [ta{{n}^{-1}}{\sin({\cot}^{-1}}x)\}]\]………….(3)
From equation(1), we have \[\theta ={{\cot }^{-1}}x\] .
Substituting equation(1) in equation(3), we get \[\cos [ta{{n}^{-1}}\{sin\theta \}]\]…………..(4)
Now, using equation(2), equation(4) can be written as
\[\begin{align}
& \sin ({{\sin }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right)) \\
& =\dfrac{1}{\sqrt{1+{{x}^{2}}}} \\
\end{align}\]
Our equation may be written as,
\[\begin{align}
& \cos \left[ {{\tan }^{-1}}\left\{ \sin \left( {{\sin }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right) \right) \right\} \right] \\
& =\cos \left[ {{\tan }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right) \right] \\
\end{align}\]
We have simplified our equation given in the question.
Now, we have to solve the equation, \[\cos \left[ {{\tan }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right) \right]\]……….(5)
For this, we have to convert the inverse tan function into inverse cosine function.
Similarly, let us assume,
\[\beta ={{\tan }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right)\]……………..(6)
Solving equation(6), we get \[\tan \beta =\dfrac{1}{\sqrt{1+{{x}^{2}}}}\]…………..(7)
We also know the identity, \[{{\sec }^{2}}\beta -{{\tan }^{2}}\beta =1\] .
\[\sec \beta =\sqrt{1+{{\tan }^{2}}\beta }\]……………..(8)
Using equation(7) and substituting it in equation(8), we get
\[\begin{align}
& \sec \beta =\sqrt{1+{{\tan }^{2}}\beta } \\
& =\sqrt{1+\dfrac{1}{1+{{x}^{2}}}} \\
& =\sqrt{\dfrac{1+{{x}^{2}}+1}{1+{{x}^{2}}}} \\
& =\sqrt{\dfrac{2+{{x}^{2}}}{1+{{x}^{2}}}} \\
\end{align}\]
We also know that, \[\cos \beta =\dfrac{1}{\sec \beta }\] .
Using this formula we can find \[\cos \beta\] .
\[\cos \beta =\dfrac{\sqrt{1+{{x}^{2}}}}{\sqrt{2+{{x}^{2}}}}\]…………….(9)
Substituting equation(6) in equation(5), we get
\[\cos (ta{{n}^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right))\]
\[=\cos \beta \]
Substituting the value from equation(9), we get
\[\cos \beta =\sqrt{\dfrac{1+{{x}^{2}}}{2+{{x}^{2}}}}\]
Therefore,LHS=RHS
Hence, proved.
Note: In this question, we have to transform one trigonometric function into other trigonometric functions multiple times. So, one can easily make a mistake in the calculations involved in the transformation. It will be easier if we transform the functions using the right-angled triangle and Pythagoras theorem.
Pythagoras theorem,
Hypotenuse =\[\sqrt{{{\left( \text{height} \right)}^{2}}+{{\left(\text{Base}\right)}^{2}}}\] .
Using this formula, we can find height, base and hypotenuse. Now, transformation can be done easily.
Complete step-by-step solution -
Solve this question, step by step.
Treat \[\sin (co{{t}^{-1}}x)\] as the first part and then simplify this.
So, first of all, we have to solve \[\sin (co{{t}^{-1}}x)\].
Let us assume,
\[\theta ={{\cot }^{-1}}x\]
\[\Rightarrow \cot \theta =x\]…………..(1)
We have, \[\cot \theta =\dfrac{\text{base}}{\text{Height}} \],
Base = x,
Height= 1,
Using Pythagoras theorem Hypotenuse =\[\sqrt{{{\left(\text{height} \right)}^{2}}+{{\left(\text{Base} \right)}^{2}}}\], we get
Hypotenuse= \[\sqrt{1+{{x}^{2}}}\]
\[\sin \theta =\dfrac{\text{height}}{\text{hypotenuse}}\]
\[\sin \theta =\dfrac{1}{\sqrt{1+{{x}^{2}}}}\]
\[\Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right)\]………………(2)
According to the question, we have \[\cos [ta{{n}^{-1}}{\sin({\cot}^{-1}}x)\}]\]………….(3)
From equation(1), we have \[\theta ={{\cot }^{-1}}x\] .
Substituting equation(1) in equation(3), we get \[\cos [ta{{n}^{-1}}\{sin\theta \}]\]…………..(4)
Now, using equation(2), equation(4) can be written as
\[\begin{align}
& \sin ({{\sin }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right)) \\
& =\dfrac{1}{\sqrt{1+{{x}^{2}}}} \\
\end{align}\]
Our equation may be written as,
\[\begin{align}
& \cos \left[ {{\tan }^{-1}}\left\{ \sin \left( {{\sin }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right) \right) \right\} \right] \\
& =\cos \left[ {{\tan }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right) \right] \\
\end{align}\]
We have simplified our equation given in the question.
Now, we have to solve the equation, \[\cos \left[ {{\tan }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right) \right]\]……….(5)
For this, we have to convert the inverse tan function into inverse cosine function.
Similarly, let us assume,
\[\beta ={{\tan }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right)\]……………..(6)
Solving equation(6), we get \[\tan \beta =\dfrac{1}{\sqrt{1+{{x}^{2}}}}\]…………..(7)
We also know the identity, \[{{\sec }^{2}}\beta -{{\tan }^{2}}\beta =1\] .
\[\sec \beta =\sqrt{1+{{\tan }^{2}}\beta }\]……………..(8)
Using equation(7) and substituting it in equation(8), we get
\[\begin{align}
& \sec \beta =\sqrt{1+{{\tan }^{2}}\beta } \\
& =\sqrt{1+\dfrac{1}{1+{{x}^{2}}}} \\
& =\sqrt{\dfrac{1+{{x}^{2}}+1}{1+{{x}^{2}}}} \\
& =\sqrt{\dfrac{2+{{x}^{2}}}{1+{{x}^{2}}}} \\
\end{align}\]
We also know that, \[\cos \beta =\dfrac{1}{\sec \beta }\] .
Using this formula we can find \[\cos \beta\] .
\[\cos \beta =\dfrac{\sqrt{1+{{x}^{2}}}}{\sqrt{2+{{x}^{2}}}}\]…………….(9)
Substituting equation(6) in equation(5), we get
\[\cos (ta{{n}^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right))\]
\[=\cos \beta \]
Substituting the value from equation(9), we get
\[\cos \beta =\sqrt{\dfrac{1+{{x}^{2}}}{2+{{x}^{2}}}}\]
Therefore,LHS=RHS
Hence, proved.
Note: In this question, we have to transform one trigonometric function into other trigonometric functions multiple times. So, one can easily make a mistake in the calculations involved in the transformation. It will be easier if we transform the functions using the right-angled triangle and Pythagoras theorem.
Pythagoras theorem,
Hypotenuse =\[\sqrt{{{\left( \text{height} \right)}^{2}}+{{\left(\text{Base}\right)}^{2}}}\] .
Using this formula, we can find height, base and hypotenuse. Now, transformation can be done easily.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

