Prove the following expression:
\[\underset{n\to \infty }{\mathop{\lim \text{it}}}\,\dfrac{1}{n}\left[ {{\cos }^{2p}}\dfrac{\pi }{2n}+{{\cos }^{2p}}\dfrac{2\pi }{2n}+{{\cos }^{2p}}\dfrac{3\pi }{2n}+{{\cos }^{2p}}\dfrac{\pi }{2} \right]=\underset{r=1}{\overset{p}{\mathop{\prod }}}\,\dfrac{p+r}{4r}\]
Last updated date: 17th Mar 2023
•
Total views: 207.5k
•
Views today: 2.87k
Answer
207.5k+ views
Hint: Apply reverse of limit as a sum means converting any infinite series to integral form. Find $\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}xdx}$ using integration by parts by splitting ${{\cos }^{n}}x$ to $\cos x\ and\ {{\cos }^{n-1}}x$.
Here, we have the limit given to calculate is
\[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{\cos }^{2p}}\dfrac{\pi }{2n}+{{\cos }^{2p}}\dfrac{2\pi }{2n}+{{\cos }^{2p}}\dfrac{3\pi }{2n}+......{{\cos }^{2p}}\dfrac{n\pi }{2n} \right]\]which should be equal to given result \[\underset{r=1}{\overset{p}{\mathop{\prod }}}\,\dfrac{p+r}{4r}\]i.e.,
$\left( \dfrac{p+1}{4} \right)\left( \dfrac{p+2}{4.2} \right)\left( \dfrac{p+3}{4.3} \right)......\left( \dfrac{2p}{4.p} \right)$
Let us first calculate LHS part of the given equation;
\[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{\cos }^{2p}}\dfrac{\pi }{2n}+{{\cos }^{2p}}\dfrac{2\pi }{2n}+{{\cos }^{2p}}\dfrac{3\pi }{2n}+......{{\cos }^{2p}}\dfrac{n\pi }{2n} \right]..........\left( 1 \right)\]
Here, we can put a direct limit to the function, and we cannot find summation of the given series (very complex). We cannot put a limit because the number of times is not defined.
So, here we need to apply limits as a sum rule of integration.
Basic definition of limit as a sum that if we want to find integration of any function then we can break that function into infinite sums;
$\left( h=\dfrac{b-a}{n} \right)$
We can write $\int_{a}^{b}{f\left( x \right)}dx$ to sum of area of very short intervals of length ‘h’, and can be expressed
$\int_{a}^{b}{f\left( x \right)}dx=hf\left( a \right)+hf\left( a+h \right)+hf\left( a+2h \right)+....hf\left( a+\left( n-1 \right)h \right)$
Where h(f(a)), hf(a+h)………hf(a+(n-1)h) are areas of rectangles formed.
$\int_{a}^{b}{f\left( x \right)dx=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,}\dfrac{1}{n}\left( f\left( a \right)+f\left( a+h \right)+.......f\left( a+\left( n-1 \right)d \right) \right)$
We can observe that reverse of the limit as a sum of integration should also be true and expressed as follows;
Above given series can be written as;
$\int_{a}^{b}{f\left( x \right)dx=\underset{n\to \infty }{\mathop{\lim }}\,}\dfrac{b-a}{n}\sum\limits_{r=0}^{n}{f\left( a+rh \right)}$
We have, $h=\dfrac{b-a}{n}$
$\int_{a}^{b}{f\left( x \right)dx=\underset{h\to 0}{\mathop{\lim }}\,}h\sum\limits_{r=0}^{n=\dfrac{\left( b-a \right)}{h}}{f\left( a+rh \right)}$
By comparison, of the above equation, we can get the reverse of the above as well.
Let us suppose we have series given as;
\[\begin{align}
& \underset{n\to \infty }{\mathop{\dfrac{b-a}{n}}}\,\sum\limits_{r=0}^{n}{f\left( a+\left( b-a \right)\dfrac{r}{n} \right)}=\underset{n\to \infty }{\mathop{\dfrac{b-a}{n}}}\,\left[ f\left( a \right)+f\left( a+\dfrac{\left( b-a \right)}{n} \right)+.......f\left( a+\dfrac{\left( b-a \right)n}{n} \right) \right] \\
& \int_{a}^{b}{f\left( x \right)dx} \\
\end{align}\]
Let we have \[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{f\left( a+\dfrac{r}{h} \right)}\]
Hence, we need to convert given series to integral form by changing
\[\begin{align}
& \dfrac{1}{n}\to dx \\
& \dfrac{r}{n}\to x \\
\end{align}\]
Lower limit \[=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{r}{n}\]
Upper limit = put r = n in $\left( \dfrac{r}{n} \right)$ i.e. maximum value of r.
Now, coming to the question, we have
\[\begin{align}
& \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{\cos }^{2p}}\dfrac{\pi }{2n}+{{\cos }^{2p}}\dfrac{2\pi }{2n}+{{\cos }^{2p}}\dfrac{3\pi }{2n}+......{{\cos }^{2p}}\dfrac{n\pi }{2n} \right] \\
& \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{{{\cos }^{2p}}\dfrac{r\pi }{2n}} \\
\end{align}\]
Here, we need to replace $\dfrac{1}{n}$ by dx, \[\dfrac{r}{n}\]by x,
Lower limit \[=n\to \infty \dfrac{r}{n}=0\]
Upper limit = r = n in $\dfrac{r}{n}=1$
Hence, we can write the given series in integral form;
$\int_{0}^{1}{{{\cos }^{2p}}\left( \dfrac{\pi x}{2} \right)dx}$
Now, we need to solve above integration as;
$I=\int_{0}^{1}{{{\cos }^{2p}}\dfrac{\pi x}{2}}dx$
Let \[\dfrac{\pi x}{2}=t\]
Differentiating both sides;
\[\begin{align}
& \dfrac{\pi }{2}\dfrac{dx}{dt}=1 \\
& dx=\dfrac{2}{\pi }dt \\
\end{align}\]
Lower limit w.r.t. t is =0
Upper limit w.r.t. t is \[\dfrac{\pi }{2}\]
$I=\dfrac{2}{\pi }\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2p}}t}dt$
Taking n = 2p, we get
$I=\dfrac{2}{\pi }\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}t}dt$………………… (2)
Now, we have to find $\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}t}dt$, so that we can put it to equation (2) to get answer.
\[\begin{align}
& {{I}_{n}}=\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}x}dx................\left( 3 \right) \\
& =\int_{0}^{\dfrac{\pi }{2}}{\cos x}{{\cos }^{n-1}}xdx \\
\end{align}\]
Apply integration by parts as;
If we have two functions in multiplication then we have,
$\int{f\left( x \right)g\left( x \right)=f\left( x \right)\int{g\left( x \right)-\int{f'\left( x \right)}}}\int{g\left( x \right)}$
Here $f\left( x \right)={{\cos }^{n-1}}x\And g\left( x \right)=\cos x$
Hence,
\[\begin{align}
& {{I}_{n}}=\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}xdx=}\int_{0}^{\dfrac{\pi }{2}}{\cos x{{\cos }^{n-1}}xdx} \\
& {{I}_{n}}=\int_{0}^{\dfrac{\pi }{2}}{\cos x{{\cos }^{n-1}}xdx} \\
\end{align}\]
\[\begin{align}
& {{I}_{n}}={{\cos }^{n-1}}x\int_{0}^{\dfrac{\pi }{2}}{\cos xdx-}\int_{0}^{\dfrac{\pi }{2}}{\dfrac{d }{dx}{{\cos }^{n-1}}x}\int{\cos xdx.dx} \\
& {{I}_{n}}={{\cos }^{n-1}}x\sin x\left| \begin{matrix}
\dfrac{\pi }{2} \\
0 \\
\end{matrix} \right.+\int_{0}^{\dfrac{\pi }{2}}{\left( n-1 \right)}{{\cos }^{n-2}}x\sin x.\sin xdx \\
& {{I}_{n}}=0+\left( n-1 \right)\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}{{\sin }^{2}}xdx \\
& {{I}_{n}}=\left( n-1 \right)\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}\left( 1-{{\cos }^{2}}x \right)dx \\
& {{I}_{n}}=\left( n-1 \right)\left( \int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}dx-\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}xdx} \right) \\
\end{align}\]
We have \[In=\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}xdx}\]from equation (3)
\[\begin{align}
& {{I}_{n}}=\left( n-1 \right)\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}dx-{{I}_{n}}\left( n-1 \right) \\
& {{I}_{n}}=\left( \dfrac{n-1}{n} \right)\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}dx \\
& {{I}_{n}}=\left( \dfrac{n-1}{n} \right){{I}_{n-2}}..............\left( 4 \right) \\
\end{align}\]
Let us calculate ${{I}_{n-2}}$ in similar way;
\[\begin{align}
& {{I}_{n-2}}=\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}dx..............\left( 5 \right) \\
& {{I}_{n-2}}=\int_{0}^{\dfrac{\pi }{2}}{\cos x}{{\cos }^{n-3}}xdx \\
\end{align}\]
Applying integration by parts here as well, we get;
\[\begin{align}
& {{I}_{n-2}}={{\cos }^{n-3}}x\int_{0}^{\dfrac{\pi }{2}}{\cos x}dx-\int{\dfrac{d}{dx}}\left( {{\cos }^{n-3}}x \right).\int{\cos xdx.dx} \\
& {{I}_{n-2}}={{\cos }^{n-3}}x\sin x\left| \begin{matrix}
\dfrac{\pi }{2} \\
0 \\
\end{matrix} \right.\int_{0}^{\dfrac{\pi }{2}}{\left( n-3 \right){{\cos }^{n-4}}x}{{\sin }^{2}}xdx \\
& {{I}_{n-2}}=0+\left( n-3 \right)\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-4}}x}{{\sin }^{2}}xdx \\
& {{I}_{n-2}}=\left( n-3 \right)\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-4}}x}\left( 1-{{\cos }^{2}}x \right)dx \\
& {{I}_{n-2}}=\left( n-3 \right)\left[ \int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-4}}x}dx-\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}dx \right] \\
\end{align}\]
Since,\[{{I}_{n-2}}\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}dx\] from equation (5)
\[\begin{align}
& {{I}_{n-2}}=\left( n-3 \right)\left[ \int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-4}}x}dx-{{I}_{n-4}} \right] \\
& {{I}_{n-2}}=\left( \dfrac{n-3}{n-2} \right){{I}_{n-4}}.............\left( 6 \right) \\
\end{align}\]
Now, from equation (4), (5), (6) we have
${{I}_{n}}=\left( \dfrac{n-1}{n} \right)\left( \dfrac{n-3}{n-2} \right){{I}_{n-4}}$
Similarly,
${{I}_{n-4}}=\left( \dfrac{n-5}{n-4} \right){{I}_{n}}=6$
Hence, we can generalize the above integration as
${{I}_{n}}=\left( \dfrac{n-1}{n} \right)\left( \dfrac{n-3}{n-2} \right)\left( \dfrac{n-5}{n-4} \right)..........$
Now, we can observe that answer will depend if n is odd or even.
If n is odd then at last stage we get ${{I}_{3}}\And {{I}_{1}}$ and if n is even then at last stage we get ${{I}_{2}}$
$\begin{align}
& {{I}_{1}}=\int_{0}^{\dfrac{\pi }{2}}{\cos xdx=\sin x}\int_{0}^{\dfrac{\pi }{2}}{=1} \\
& {{I}_{2}}=\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}xdx=}\int_{0}^{\dfrac{\pi }{2}}{\dfrac{1-{{\cos }^{2}}x}{2}} \\
& =\left( \dfrac{x}{2}-\dfrac{1}{2}\dfrac{{{\sin }^{2}}x}{2} \right)\begin{matrix}
\dfrac{\pi }{2} \\
0 \\
\end{matrix} \\
& {{I}_{2}}=\dfrac{\pi }{4}-\dfrac{1}{2}\times \left( 0 \right)=\dfrac{\pi }{4} \\
\end{align}$
Hence, the above relation can be written as;
${{I}_{n}}=\left( \dfrac{n-1}{n} \right)\left( \dfrac{n-3}{n-2} \right).........\dfrac{2}{3}\left( 1 \right)$ if n is odd
${{I}_{n}}=\left( \dfrac{n-1}{n} \right)\left( \dfrac{n-3}{n-2} \right).........\dfrac{7}{8}\dfrac{5}{6}\dfrac{\pi }{4}$ if n is even
Now, coming back to the integration
$\dfrac{2}{\pi }\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2p}}+dt}$, here n = 2p is an even number.
Hence, we can write the above integral as
\[I=\dfrac{2}{\pi }\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2p}}tdt=}\dfrac{2}{\pi }\left( \left( \dfrac{2p-1}{2p} \right)\left( \dfrac{2p-3}{2p-2} \right)\left( \dfrac{2p-5}{2p-4} \right).....\dfrac{7}{8}.\dfrac{5}{6}.\dfrac{3}{4}.\dfrac{\pi }{4} \right)\]
Using the integral ${{I}_{2}}=\dfrac{\pi }{4}$ as calculated in equation,
\[I=\left( \dfrac{2p-1}{2p} \right)\left( \dfrac{2p-3}{2p-2} \right)\left( \dfrac{2p-5}{2p-4} \right).....\left( \dfrac{5}{6} \right)\left( \dfrac{3}{4} \right)\left( \dfrac{1}{2} \right)\]
Multiply by (2p) (2p-2) (2p-4) …..6.4.2 in numerator and denominator as
\[\begin{align}
& I=\dfrac{\left( 2p \right)\left( 2p-1 \right)\left( 2p-2 \right)\left( 2p-3 \right).....5.4.3.2.1}{{{\left( 2p.\left( 2p-2 \right)\left( 2p-4 \right)......6.4.2 \right)}^{2}}} \\
& I=\dfrac{\left( 2p \right)!}{{{\left( {{2}^{p}}.p\left( p-1 \right)\left( p-2 \right).....3.2.1 \right)}^{2}}} \\
& I=\dfrac{\left( 2p \right)!}{{{2}^{2p}}.{{\left( p! \right)}^{2}}}=\dfrac{2p!}{{{4}^{p}}p!p!} \\
\end{align}\]
Now, let us calculated $\left( 2p \right)!$ as below;
$\begin{align}
& \left( 2p \right)!=\left( 2p \right)\left( 2p-1 \right).......\left( 2p-p \right)\left( 2p-p-1 \right).......3.2.1 \\
& Or \\
& \left( 2p \right)!=\left( 2p \right)\left( 2p-1 \right).......\left( p \right)\left( p-1 \right).......3.2.1 \\
\end{align}$
Let us write the above series in reverse order;
$\begin{align}
& \left( 2p \right)!=1.2.3.4.....\left( p-1 \right)p\left( p+1 \right)\left( p+2 \right)\left( p+p \right) \\
& \left( 2p \right)!=\left( 1.2.3.4....p \right)\left( p+1 \right)\left( p+2 \right)\left( p+p \right) \\
\end{align}$
Let us substitute the above value of $\left( 2p \right)!$ in equation
$\begin{align}
& I=\dfrac{\left( 1.2.3.4....p \right)\left( p+1 \right)\left( p+2 \right)\left( p+p \right)}{{{4}^{p}}.p!p!} \\
& Or \\
& I=\dfrac{p!\left( p+1 \right)\left( p+2 \right)\left( p+3 \right)...........\left( p+p \right)}{{{4}^{p}}.p!p!} \\
& I=\dfrac{\left( p+1 \right)\left( p+2 \right)\left( p+3 \right)...........\left( p+p \right)}{{{4}^{p}}.p!} \\
\end{align}$
We can write the above expression as
$\begin{align}
& I=\left( \dfrac{p+1}{4.1} \right)\left( \dfrac{p+2}{4.2} \right)\left( \dfrac{p+3}{4.3} \right)......\left( \dfrac{p+p}{4.p} \right) \\
& I=\underset{r=1}{\overset{p}{\mathop{\prod }}}\,\dfrac{p+r}{4r}=RHS \\
\end{align}$
Hence Proved.
Note: Calculation plays an important role in these types of subjective problems.
One can go wrong while changing the given series to integral. Limits of integral will be a key point of further solution.
In limit as a sum, we need to replace
\[\begin{align}
& \dfrac{1}{n}\to dx \\
& \dfrac{r}{n}\to x \\
\end{align}\]
Lower limit \[=n\to \infty \text{ to }\left( \dfrac{r}{n} \right)\text{ part}\]
Upper limit = put r = maximum value of n in $\left( \dfrac{r}{n} \right)$.
One can waste his/her time when even thinking that this is a problem of limit and differentiability chapter.
Integration of $\int_{0}^{\dfrac{\pi }{2}}{\cos xdx\And }\int_{0}^{\dfrac{\pi }{2}}{{{\sin }^{n}}x}dx$need to remember as
${{I}_{n}}=\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}xdx}=\left( \dfrac{n-1}{n} \right){{I}_{n-2}}$
Here, we have the limit given to calculate is
\[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{\cos }^{2p}}\dfrac{\pi }{2n}+{{\cos }^{2p}}\dfrac{2\pi }{2n}+{{\cos }^{2p}}\dfrac{3\pi }{2n}+......{{\cos }^{2p}}\dfrac{n\pi }{2n} \right]\]which should be equal to given result \[\underset{r=1}{\overset{p}{\mathop{\prod }}}\,\dfrac{p+r}{4r}\]i.e.,
$\left( \dfrac{p+1}{4} \right)\left( \dfrac{p+2}{4.2} \right)\left( \dfrac{p+3}{4.3} \right)......\left( \dfrac{2p}{4.p} \right)$
Let us first calculate LHS part of the given equation;
\[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{\cos }^{2p}}\dfrac{\pi }{2n}+{{\cos }^{2p}}\dfrac{2\pi }{2n}+{{\cos }^{2p}}\dfrac{3\pi }{2n}+......{{\cos }^{2p}}\dfrac{n\pi }{2n} \right]..........\left( 1 \right)\]
Here, we can put a direct limit to the function, and we cannot find summation of the given series (very complex). We cannot put a limit because the number of times is not defined.
So, here we need to apply limits as a sum rule of integration.
Basic definition of limit as a sum that if we want to find integration of any function then we can break that function into infinite sums;

$\left( h=\dfrac{b-a}{n} \right)$
We can write $\int_{a}^{b}{f\left( x \right)}dx$ to sum of area of very short intervals of length ‘h’, and can be expressed
$\int_{a}^{b}{f\left( x \right)}dx=hf\left( a \right)+hf\left( a+h \right)+hf\left( a+2h \right)+....hf\left( a+\left( n-1 \right)h \right)$
Where h(f(a)), hf(a+h)………hf(a+(n-1)h) are areas of rectangles formed.
$\int_{a}^{b}{f\left( x \right)dx=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,}\dfrac{1}{n}\left( f\left( a \right)+f\left( a+h \right)+.......f\left( a+\left( n-1 \right)d \right) \right)$
We can observe that reverse of the limit as a sum of integration should also be true and expressed as follows;
Above given series can be written as;
$\int_{a}^{b}{f\left( x \right)dx=\underset{n\to \infty }{\mathop{\lim }}\,}\dfrac{b-a}{n}\sum\limits_{r=0}^{n}{f\left( a+rh \right)}$
We have, $h=\dfrac{b-a}{n}$
$\int_{a}^{b}{f\left( x \right)dx=\underset{h\to 0}{\mathop{\lim }}\,}h\sum\limits_{r=0}^{n=\dfrac{\left( b-a \right)}{h}}{f\left( a+rh \right)}$
By comparison, of the above equation, we can get the reverse of the above as well.
Let us suppose we have series given as;
\[\begin{align}
& \underset{n\to \infty }{\mathop{\dfrac{b-a}{n}}}\,\sum\limits_{r=0}^{n}{f\left( a+\left( b-a \right)\dfrac{r}{n} \right)}=\underset{n\to \infty }{\mathop{\dfrac{b-a}{n}}}\,\left[ f\left( a \right)+f\left( a+\dfrac{\left( b-a \right)}{n} \right)+.......f\left( a+\dfrac{\left( b-a \right)n}{n} \right) \right] \\
& \int_{a}^{b}{f\left( x \right)dx} \\
\end{align}\]
Let we have \[\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{f\left( a+\dfrac{r}{h} \right)}\]
Hence, we need to convert given series to integral form by changing
\[\begin{align}
& \dfrac{1}{n}\to dx \\
& \dfrac{r}{n}\to x \\
\end{align}\]
Lower limit \[=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{r}{n}\]
Upper limit = put r = n in $\left( \dfrac{r}{n} \right)$ i.e. maximum value of r.
Now, coming to the question, we have
\[\begin{align}
& \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{\cos }^{2p}}\dfrac{\pi }{2n}+{{\cos }^{2p}}\dfrac{2\pi }{2n}+{{\cos }^{2p}}\dfrac{3\pi }{2n}+......{{\cos }^{2p}}\dfrac{n\pi }{2n} \right] \\
& \underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\sum\limits_{r=1}^{n}{{{\cos }^{2p}}\dfrac{r\pi }{2n}} \\
\end{align}\]
Here, we need to replace $\dfrac{1}{n}$ by dx, \[\dfrac{r}{n}\]by x,
Lower limit \[=n\to \infty \dfrac{r}{n}=0\]
Upper limit = r = n in $\dfrac{r}{n}=1$
Hence, we can write the given series in integral form;
$\int_{0}^{1}{{{\cos }^{2p}}\left( \dfrac{\pi x}{2} \right)dx}$
Now, we need to solve above integration as;
$I=\int_{0}^{1}{{{\cos }^{2p}}\dfrac{\pi x}{2}}dx$
Let \[\dfrac{\pi x}{2}=t\]
Differentiating both sides;
\[\begin{align}
& \dfrac{\pi }{2}\dfrac{dx}{dt}=1 \\
& dx=\dfrac{2}{\pi }dt \\
\end{align}\]
Lower limit w.r.t. t is =0
Upper limit w.r.t. t is \[\dfrac{\pi }{2}\]
$I=\dfrac{2}{\pi }\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2p}}t}dt$
Taking n = 2p, we get
$I=\dfrac{2}{\pi }\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}t}dt$………………… (2)
Now, we have to find $\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}t}dt$, so that we can put it to equation (2) to get answer.
\[\begin{align}
& {{I}_{n}}=\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}x}dx................\left( 3 \right) \\
& =\int_{0}^{\dfrac{\pi }{2}}{\cos x}{{\cos }^{n-1}}xdx \\
\end{align}\]
Apply integration by parts as;
If we have two functions in multiplication then we have,
$\int{f\left( x \right)g\left( x \right)=f\left( x \right)\int{g\left( x \right)-\int{f'\left( x \right)}}}\int{g\left( x \right)}$
Here $f\left( x \right)={{\cos }^{n-1}}x\And g\left( x \right)=\cos x$
Hence,
\[\begin{align}
& {{I}_{n}}=\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}xdx=}\int_{0}^{\dfrac{\pi }{2}}{\cos x{{\cos }^{n-1}}xdx} \\
& {{I}_{n}}=\int_{0}^{\dfrac{\pi }{2}}{\cos x{{\cos }^{n-1}}xdx} \\
\end{align}\]
\[\begin{align}
& {{I}_{n}}={{\cos }^{n-1}}x\int_{0}^{\dfrac{\pi }{2}}{\cos xdx-}\int_{0}^{\dfrac{\pi }{2}}{\dfrac{d }{dx}{{\cos }^{n-1}}x}\int{\cos xdx.dx} \\
& {{I}_{n}}={{\cos }^{n-1}}x\sin x\left| \begin{matrix}
\dfrac{\pi }{2} \\
0 \\
\end{matrix} \right.+\int_{0}^{\dfrac{\pi }{2}}{\left( n-1 \right)}{{\cos }^{n-2}}x\sin x.\sin xdx \\
& {{I}_{n}}=0+\left( n-1 \right)\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}{{\sin }^{2}}xdx \\
& {{I}_{n}}=\left( n-1 \right)\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}\left( 1-{{\cos }^{2}}x \right)dx \\
& {{I}_{n}}=\left( n-1 \right)\left( \int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}dx-\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}xdx} \right) \\
\end{align}\]
We have \[In=\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}xdx}\]from equation (3)
\[\begin{align}
& {{I}_{n}}=\left( n-1 \right)\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}dx-{{I}_{n}}\left( n-1 \right) \\
& {{I}_{n}}=\left( \dfrac{n-1}{n} \right)\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}dx \\
& {{I}_{n}}=\left( \dfrac{n-1}{n} \right){{I}_{n-2}}..............\left( 4 \right) \\
\end{align}\]
Let us calculate ${{I}_{n-2}}$ in similar way;
\[\begin{align}
& {{I}_{n-2}}=\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}dx..............\left( 5 \right) \\
& {{I}_{n-2}}=\int_{0}^{\dfrac{\pi }{2}}{\cos x}{{\cos }^{n-3}}xdx \\
\end{align}\]
Applying integration by parts here as well, we get;
\[\begin{align}
& {{I}_{n-2}}={{\cos }^{n-3}}x\int_{0}^{\dfrac{\pi }{2}}{\cos x}dx-\int{\dfrac{d}{dx}}\left( {{\cos }^{n-3}}x \right).\int{\cos xdx.dx} \\
& {{I}_{n-2}}={{\cos }^{n-3}}x\sin x\left| \begin{matrix}
\dfrac{\pi }{2} \\
0 \\
\end{matrix} \right.\int_{0}^{\dfrac{\pi }{2}}{\left( n-3 \right){{\cos }^{n-4}}x}{{\sin }^{2}}xdx \\
& {{I}_{n-2}}=0+\left( n-3 \right)\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-4}}x}{{\sin }^{2}}xdx \\
& {{I}_{n-2}}=\left( n-3 \right)\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-4}}x}\left( 1-{{\cos }^{2}}x \right)dx \\
& {{I}_{n-2}}=\left( n-3 \right)\left[ \int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-4}}x}dx-\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}dx \right] \\
\end{align}\]
Since,\[{{I}_{n-2}}\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-2}}x}dx\] from equation (5)
\[\begin{align}
& {{I}_{n-2}}=\left( n-3 \right)\left[ \int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n-4}}x}dx-{{I}_{n-4}} \right] \\
& {{I}_{n-2}}=\left( \dfrac{n-3}{n-2} \right){{I}_{n-4}}.............\left( 6 \right) \\
\end{align}\]
Now, from equation (4), (5), (6) we have
${{I}_{n}}=\left( \dfrac{n-1}{n} \right)\left( \dfrac{n-3}{n-2} \right){{I}_{n-4}}$
Similarly,
${{I}_{n-4}}=\left( \dfrac{n-5}{n-4} \right){{I}_{n}}=6$
Hence, we can generalize the above integration as
${{I}_{n}}=\left( \dfrac{n-1}{n} \right)\left( \dfrac{n-3}{n-2} \right)\left( \dfrac{n-5}{n-4} \right)..........$
Now, we can observe that answer will depend if n is odd or even.
If n is odd then at last stage we get ${{I}_{3}}\And {{I}_{1}}$ and if n is even then at last stage we get ${{I}_{2}}$
$\begin{align}
& {{I}_{1}}=\int_{0}^{\dfrac{\pi }{2}}{\cos xdx=\sin x}\int_{0}^{\dfrac{\pi }{2}}{=1} \\
& {{I}_{2}}=\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}xdx=}\int_{0}^{\dfrac{\pi }{2}}{\dfrac{1-{{\cos }^{2}}x}{2}} \\
& =\left( \dfrac{x}{2}-\dfrac{1}{2}\dfrac{{{\sin }^{2}}x}{2} \right)\begin{matrix}
\dfrac{\pi }{2} \\
0 \\
\end{matrix} \\
& {{I}_{2}}=\dfrac{\pi }{4}-\dfrac{1}{2}\times \left( 0 \right)=\dfrac{\pi }{4} \\
\end{align}$
Hence, the above relation can be written as;
${{I}_{n}}=\left( \dfrac{n-1}{n} \right)\left( \dfrac{n-3}{n-2} \right).........\dfrac{2}{3}\left( 1 \right)$ if n is odd
${{I}_{n}}=\left( \dfrac{n-1}{n} \right)\left( \dfrac{n-3}{n-2} \right).........\dfrac{7}{8}\dfrac{5}{6}\dfrac{\pi }{4}$ if n is even
Now, coming back to the integration
$\dfrac{2}{\pi }\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2p}}+dt}$, here n = 2p is an even number.
Hence, we can write the above integral as
\[I=\dfrac{2}{\pi }\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2p}}tdt=}\dfrac{2}{\pi }\left( \left( \dfrac{2p-1}{2p} \right)\left( \dfrac{2p-3}{2p-2} \right)\left( \dfrac{2p-5}{2p-4} \right).....\dfrac{7}{8}.\dfrac{5}{6}.\dfrac{3}{4}.\dfrac{\pi }{4} \right)\]
Using the integral ${{I}_{2}}=\dfrac{\pi }{4}$ as calculated in equation,
\[I=\left( \dfrac{2p-1}{2p} \right)\left( \dfrac{2p-3}{2p-2} \right)\left( \dfrac{2p-5}{2p-4} \right).....\left( \dfrac{5}{6} \right)\left( \dfrac{3}{4} \right)\left( \dfrac{1}{2} \right)\]
Multiply by (2p) (2p-2) (2p-4) …..6.4.2 in numerator and denominator as
\[\begin{align}
& I=\dfrac{\left( 2p \right)\left( 2p-1 \right)\left( 2p-2 \right)\left( 2p-3 \right).....5.4.3.2.1}{{{\left( 2p.\left( 2p-2 \right)\left( 2p-4 \right)......6.4.2 \right)}^{2}}} \\
& I=\dfrac{\left( 2p \right)!}{{{\left( {{2}^{p}}.p\left( p-1 \right)\left( p-2 \right).....3.2.1 \right)}^{2}}} \\
& I=\dfrac{\left( 2p \right)!}{{{2}^{2p}}.{{\left( p! \right)}^{2}}}=\dfrac{2p!}{{{4}^{p}}p!p!} \\
\end{align}\]
Now, let us calculated $\left( 2p \right)!$ as below;
$\begin{align}
& \left( 2p \right)!=\left( 2p \right)\left( 2p-1 \right).......\left( 2p-p \right)\left( 2p-p-1 \right).......3.2.1 \\
& Or \\
& \left( 2p \right)!=\left( 2p \right)\left( 2p-1 \right).......\left( p \right)\left( p-1 \right).......3.2.1 \\
\end{align}$
Let us write the above series in reverse order;
$\begin{align}
& \left( 2p \right)!=1.2.3.4.....\left( p-1 \right)p\left( p+1 \right)\left( p+2 \right)\left( p+p \right) \\
& \left( 2p \right)!=\left( 1.2.3.4....p \right)\left( p+1 \right)\left( p+2 \right)\left( p+p \right) \\
\end{align}$
Let us substitute the above value of $\left( 2p \right)!$ in equation
$\begin{align}
& I=\dfrac{\left( 1.2.3.4....p \right)\left( p+1 \right)\left( p+2 \right)\left( p+p \right)}{{{4}^{p}}.p!p!} \\
& Or \\
& I=\dfrac{p!\left( p+1 \right)\left( p+2 \right)\left( p+3 \right)...........\left( p+p \right)}{{{4}^{p}}.p!p!} \\
& I=\dfrac{\left( p+1 \right)\left( p+2 \right)\left( p+3 \right)...........\left( p+p \right)}{{{4}^{p}}.p!} \\
\end{align}$
We can write the above expression as
$\begin{align}
& I=\left( \dfrac{p+1}{4.1} \right)\left( \dfrac{p+2}{4.2} \right)\left( \dfrac{p+3}{4.3} \right)......\left( \dfrac{p+p}{4.p} \right) \\
& I=\underset{r=1}{\overset{p}{\mathop{\prod }}}\,\dfrac{p+r}{4r}=RHS \\
\end{align}$
Hence Proved.
Note: Calculation plays an important role in these types of subjective problems.
One can go wrong while changing the given series to integral. Limits of integral will be a key point of further solution.
In limit as a sum, we need to replace
\[\begin{align}
& \dfrac{1}{n}\to dx \\
& \dfrac{r}{n}\to x \\
\end{align}\]
Lower limit \[=n\to \infty \text{ to }\left( \dfrac{r}{n} \right)\text{ part}\]
Upper limit = put r = maximum value of n in $\left( \dfrac{r}{n} \right)$.
One can waste his/her time when even thinking that this is a problem of limit and differentiability chapter.
Integration of $\int_{0}^{\dfrac{\pi }{2}}{\cos xdx\And }\int_{0}^{\dfrac{\pi }{2}}{{{\sin }^{n}}x}dx$need to remember as
${{I}_{n}}=\int_{0}^{\dfrac{\pi }{2}}{{{\cos }^{n}}xdx}=\left( \dfrac{n-1}{n} \right){{I}_{n-2}}$
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Ray optics is valid when characteristic dimensions class 12 physics CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Alfred Wallace worked in A Galapagos Island B Australian class 12 biology CBSE

Imagine an atom made up of a proton and a hypothetical class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

How do you define least count for Vernier Calipers class 12 physics CBSE

Why is the cell called the structural and functional class 12 biology CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main
