
: Prove that ${{\tan }^{-1}}\left( 1 \right)+{{\tan }^{-1}}\left( 2 \right)+{{\tan }^{-1}}\left( 3 \right)=\pi $.
Answer
612.6k+ views
Hint: Assume three variables (say x, y, z) for ${{\tan }^{-1}}\left( 1 \right),{{\tan }^{-1}}2\ and {{\tan }^{-1}}3$ respectively. Then use the formula,
$''\tan \left( x+y+z \right)=\dfrac{\tan x+\tan y+\tan z-\tan x\tan y\tan z}{1-\tan x\tan y-\tan z.\tan y-\tan y\tan z}''$.
Put the value of $\tan x,\tan y\ and\ \tan z$ to get the value of $\tan \left( x+y+z \right)$ and then with the help of $\tan \left( x+y+z \right)$, find the value of $x+y+z$.
Complete Step-by-step answer:
To prove: ${{\tan }^{-1}}\left( 1 \right)+{{\tan }^{-1}}\left( 2 \right)+{{\tan }^{-1}}\left( 3 \right)=\pi $
Proof:
$\begin{align}
& LHS={{\tan }^{-1}}\left( 1 \right)+{{\tan }^{-1}}\left( 2 \right)+{{\tan }^{-1}}\left( 3 \right) \\
& RHS=\pi \\
\end{align}$
We have to prove LHS = RHS
Let us start with LHS.
$LHS={{\tan }^{-1}}\left( 1 \right)+{{\tan }^{-1}}\left( 2 \right)+{{\tan }^{-1}}\left( 3 \right)$
Let us assume $x={{\tan }^{-1}}1$
Taking tan both sides, we will get,
$\begin{align}
& \tan \left( x \right)=\tan \left( {{\tan }^{-1}}1 \right) \\
& \Rightarrow \tan x=1 \\
\end{align}$
Similarly, let us assume $y={{\tan }^{-1}}2$
Taking tan both sides, we will get,
$\begin{align}
& \tan y=\tan \left( {{\tan }^{-1}}2 \right) \\
& \Rightarrow \tan y=2 \\
\end{align}$
Similarly, let us assume $z={{\tan }^{-1}}3$
Taking tan both sides, we will get,
$\begin{align}
& \tan z=\tan \left( {{\tan }^{-1}}3 \right) \\
& \Rightarrow \tan z=3 \\
\end{align}$
Now, let us use the formula,
$\tan \left( x+y+z \right)=\dfrac{\tan x+\tan y+\tan z-\tan x\tan y\tan z}{1-\tan x\tan y-\tan z.\tan y-\tan y\tan z}$
On putting tan x = 1, tan y = 2 and tan z = 3 as calculated above, we will get,
$\begin{align}
& \Rightarrow \tan \left( x+y+z \right)=\dfrac{1+2+3-\left( 1 \right)\left( 2 \right)\left( 3 \right)}{1-\left( 1 \right)\left( 2 \right)-\left( 1 \right)\left( 3 \right)-\left( 2 \right)\left( 3 \right)} \\
& \Rightarrow \tan \left( x+y+z \right)=\dfrac{6-6}{1-2-3-6} \\
& \Rightarrow \tan \left( x+y+z \right)=\dfrac{0}{-10} \\
& \Rightarrow \tan \left( x+y+z \right)=0 \\
\end{align}$
We know,
$\begin{align}
& \tan \pi =0 \\
& \Rightarrow x+y+z=\pi \\
\end{align}$
Replace $x\ with\ {{\tan }^{-1}}1\ and\ y\ with\ {{\tan }^{-1}}2\ and\ z\ with\ {{\tan }^{-1}}3$, we will get,
${{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3=\pi $
Proved.
Note: Note that tan (0) is also equal to 0. But ${{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3$ can’t be equal to zero. As tan of these three angles are positive which mean all these angles are greater than zero and thus their sum can’t be zero. Students can make mistakes in the last step by taking x+y+z=0.
$''\tan \left( x+y+z \right)=\dfrac{\tan x+\tan y+\tan z-\tan x\tan y\tan z}{1-\tan x\tan y-\tan z.\tan y-\tan y\tan z}''$.
Put the value of $\tan x,\tan y\ and\ \tan z$ to get the value of $\tan \left( x+y+z \right)$ and then with the help of $\tan \left( x+y+z \right)$, find the value of $x+y+z$.
Complete Step-by-step answer:
To prove: ${{\tan }^{-1}}\left( 1 \right)+{{\tan }^{-1}}\left( 2 \right)+{{\tan }^{-1}}\left( 3 \right)=\pi $
Proof:
$\begin{align}
& LHS={{\tan }^{-1}}\left( 1 \right)+{{\tan }^{-1}}\left( 2 \right)+{{\tan }^{-1}}\left( 3 \right) \\
& RHS=\pi \\
\end{align}$
We have to prove LHS = RHS
Let us start with LHS.
$LHS={{\tan }^{-1}}\left( 1 \right)+{{\tan }^{-1}}\left( 2 \right)+{{\tan }^{-1}}\left( 3 \right)$
Let us assume $x={{\tan }^{-1}}1$
Taking tan both sides, we will get,
$\begin{align}
& \tan \left( x \right)=\tan \left( {{\tan }^{-1}}1 \right) \\
& \Rightarrow \tan x=1 \\
\end{align}$
Similarly, let us assume $y={{\tan }^{-1}}2$
Taking tan both sides, we will get,
$\begin{align}
& \tan y=\tan \left( {{\tan }^{-1}}2 \right) \\
& \Rightarrow \tan y=2 \\
\end{align}$
Similarly, let us assume $z={{\tan }^{-1}}3$
Taking tan both sides, we will get,
$\begin{align}
& \tan z=\tan \left( {{\tan }^{-1}}3 \right) \\
& \Rightarrow \tan z=3 \\
\end{align}$
Now, let us use the formula,
$\tan \left( x+y+z \right)=\dfrac{\tan x+\tan y+\tan z-\tan x\tan y\tan z}{1-\tan x\tan y-\tan z.\tan y-\tan y\tan z}$
On putting tan x = 1, tan y = 2 and tan z = 3 as calculated above, we will get,
$\begin{align}
& \Rightarrow \tan \left( x+y+z \right)=\dfrac{1+2+3-\left( 1 \right)\left( 2 \right)\left( 3 \right)}{1-\left( 1 \right)\left( 2 \right)-\left( 1 \right)\left( 3 \right)-\left( 2 \right)\left( 3 \right)} \\
& \Rightarrow \tan \left( x+y+z \right)=\dfrac{6-6}{1-2-3-6} \\
& \Rightarrow \tan \left( x+y+z \right)=\dfrac{0}{-10} \\
& \Rightarrow \tan \left( x+y+z \right)=0 \\
\end{align}$
We know,
$\begin{align}
& \tan \pi =0 \\
& \Rightarrow x+y+z=\pi \\
\end{align}$
Replace $x\ with\ {{\tan }^{-1}}1\ and\ y\ with\ {{\tan }^{-1}}2\ and\ z\ with\ {{\tan }^{-1}}3$, we will get,
${{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3=\pi $
Proved.
Note: Note that tan (0) is also equal to 0. But ${{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3$ can’t be equal to zero. As tan of these three angles are positive which mean all these angles are greater than zero and thus their sum can’t be zero. Students can make mistakes in the last step by taking x+y+z=0.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

