Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

: Prove that ${{\tan }^{-1}}\left( 1 \right)+{{\tan }^{-1}}\left( 2 \right)+{{\tan }^{-1}}\left( 3 \right)=\pi $.

seo-qna
Last updated date: 25th Apr 2024
Total views: 416.7k
Views today: 4.16k
Answer
VerifiedVerified
416.7k+ views
Hint: Assume three variables (say x, y, z) for ${{\tan }^{-1}}\left( 1 \right),{{\tan }^{-1}}2\ and {{\tan }^{-1}}3$ respectively. Then use the formula,
$''\tan \left( x+y+z \right)=\dfrac{\tan x+\tan y+\tan z-\tan x\tan y\tan z}{1-\tan x\tan y-\tan z.\tan y-\tan y\tan z}''$.
Put the value of $\tan x,\tan y\ and\ \tan z$ to get the value of $\tan \left( x+y+z \right)$ and then with the help of $\tan \left( x+y+z \right)$, find the value of $x+y+z$.

Complete Step-by-step answer:
To prove: ${{\tan }^{-1}}\left( 1 \right)+{{\tan }^{-1}}\left( 2 \right)+{{\tan }^{-1}}\left( 3 \right)=\pi $
Proof:
$\begin{align}
  & LHS={{\tan }^{-1}}\left( 1 \right)+{{\tan }^{-1}}\left( 2 \right)+{{\tan }^{-1}}\left( 3 \right) \\
 & RHS=\pi \\
\end{align}$
We have to prove LHS = RHS
Let us start with LHS.
$LHS={{\tan }^{-1}}\left( 1 \right)+{{\tan }^{-1}}\left( 2 \right)+{{\tan }^{-1}}\left( 3 \right)$
Let us assume $x={{\tan }^{-1}}1$
Taking tan both sides, we will get,
$\begin{align}
  & \tan \left( x \right)=\tan \left( {{\tan }^{-1}}1 \right) \\
 & \Rightarrow \tan x=1 \\
\end{align}$
Similarly, let us assume $y={{\tan }^{-1}}2$
Taking tan both sides, we will get,
$\begin{align}
  & \tan y=\tan \left( {{\tan }^{-1}}2 \right) \\
 & \Rightarrow \tan y=2 \\
\end{align}$
Similarly, let us assume $z={{\tan }^{-1}}3$
Taking tan both sides, we will get,
$\begin{align}
  & \tan z=\tan \left( {{\tan }^{-1}}3 \right) \\
 & \Rightarrow \tan z=3 \\
\end{align}$
Now, let us use the formula,
$\tan \left( x+y+z \right)=\dfrac{\tan x+\tan y+\tan z-\tan x\tan y\tan z}{1-\tan x\tan y-\tan z.\tan y-\tan y\tan z}$
On putting tan x = 1, tan y = 2 and tan z = 3 as calculated above, we will get,

$\begin{align}
  & \Rightarrow \tan \left( x+y+z \right)=\dfrac{1+2+3-\left( 1 \right)\left( 2 \right)\left( 3 \right)}{1-\left( 1 \right)\left( 2 \right)-\left( 1 \right)\left( 3 \right)-\left( 2 \right)\left( 3 \right)} \\
 & \Rightarrow \tan \left( x+y+z \right)=\dfrac{6-6}{1-2-3-6} \\
 & \Rightarrow \tan \left( x+y+z \right)=\dfrac{0}{-10} \\
 & \Rightarrow \tan \left( x+y+z \right)=0 \\
\end{align}$
We know,
 $\begin{align}
  & \tan \pi =0 \\
 & \Rightarrow x+y+z=\pi \\
\end{align}$
Replace $x\ with\ {{\tan }^{-1}}1\ and\ y\ with\ {{\tan }^{-1}}2\ and\ z\ with\ {{\tan }^{-1}}3$, we will get,
${{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3=\pi $
Proved.

Note: Note that tan (0) is also equal to 0. But ${{\tan }^{-1}}1+{{\tan }^{-1}}2+{{\tan }^{-1}}3$ can’t be equal to zero. As tan of these three angles are positive which mean all these angles are greater than zero and thus their sum can’t be zero. Students can make mistakes in the last step by taking x+y+z=0.