
Prove that:
(i) \[\dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
(ii) \[\sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {80^ \circ } = \dfrac{3}{{16}}\]
Answer
508.5k+ views
Hint: Here we will use various identities and values of certain trigonometric ratios.
The identities we will use are:-
\[\sin 2\theta = 2\sin \theta \cos \theta \]
\[\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[{\cos ^2}\theta + {\sin ^2}\theta = 1\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
\[\sin A\sin \left( {{{60}^ \circ } - A} \right)\sin \left( {{{60}^ \circ } + A} \right) = \dfrac{1}{4}\sin 3A\]
Complete step-by-step answer:
Let us first consider part (i)
(i) \[\dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
Let us consider the left hand side we get:
\[LHS = \dfrac{{\cos A}}{{1 - \sin A}}\]………………………. (1)
Now we know that:-
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Hence, \[\sin A = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}\]
Also, we know that:-
\[\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
Hence, \[\cos A = {\cos ^2}\dfrac{A}{2} - {\sin ^2}\dfrac{A}{2}\]
Putting these values in equation 1 we get:-
\[LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{1 - 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
Now we know that:-
\[{\cos ^2}\theta + {\sin ^2}\theta = 1\]
Hence,
\[{\cos ^2}\dfrac{A}{2} + {\sin ^2}\dfrac{A}{2} = 1\]
Substituting this value in the above equation we get:-
\[LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{{{\cos }^2}\dfrac{A}{2} + {{\sin }^2}\dfrac{A}{2} - 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
Now we know that:-
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Applying this identity in the denominator we get:-
\[LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}^2}}}\]
Now applying the following identity in the numerator:-
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
We get:-
\[LHS = \dfrac{{\left( {\cos \dfrac{A}{2} + \sin \dfrac{A}{2}} \right)\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}}{{{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}^2}}}\]
Cancelling the terms we get:-
\[LHS = \dfrac{{\left( {\cos \dfrac{A}{2} + \sin \dfrac{A}{2}} \right)}}{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}}\]
Now dividing the numerator and the denominator by \[\cos \dfrac{A}{2}\] we get:-
\[LHS = \dfrac{{\left( {\dfrac{{\cos \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} + \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}}} \right)}}{{\left( {\dfrac{{\cos \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} - \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}}} \right)}}\]
Simplify it further we get:-
\[LHS = \dfrac{{\left( {1 + \tan \dfrac{A}{2}} \right)}}{{\left( {1 - \left( 1 \right)\tan \dfrac{A}{2}} \right)}}\]
Now we know that:-
\[\tan \dfrac{\pi }{4} = 1\]
Substituting this value above equation we get:-
\[LHS = \dfrac{{\left( {\tan \dfrac{\pi }{4} + \tan \dfrac{A}{2}} \right)}}{{\left( {1 - \tan \dfrac{\pi }{4}\tan \dfrac{A}{2}} \right)}}\]
Now we know that:-
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Hence, applying this identity we get:-
\[LHS = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
Also, \[RHS = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
Therefore, \[LHS = RHS\]
Hence proved.
(ii) \[\sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {80^ \circ } = \dfrac{3}{{16}}\]
Let us consider the left hand side:-
\[LHS = \sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {80^ \circ }\]
\[ \Rightarrow LHS = \sin {60^ \circ }\left[ {\sin {{20}^ \circ }\sin {{40}^ \circ }\sin {{80}^ \circ }} \right]\]
Now we know that:-
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\sin {40^ \circ } = \sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\]
\[\sin {80^ \circ } = \sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)\]
Hence substituting these values we get:-
\[LHS = \dfrac{{\sqrt 3 }}{2}\left[ {\sin {{20}^ \circ }\sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)} \right]\]
Now we know that:-
\[\sin A\sin \left( {{{60}^ \circ } - A} \right)\sin \left( {{{60}^ \circ } + A} \right) = \dfrac{1}{4}\sin 3A\]
Applying this identity in above equation we get:-
\[LHS = \dfrac{{\sqrt 3 }}{2}\left[ {\dfrac{1}{4}\sin 3\left( {{{20}^ \circ }} \right)} \right]\]
Simplifying it further we get:-
\[LHS = \dfrac{{\sqrt 3 }}{8}\left[ {\sin {{60}^ \circ }} \right]\]
We know that:-
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
Putting the value we get:-
\[LHS = \dfrac{{\sqrt 3 }}{8}\left[ {\dfrac{{\sqrt 3 }}{2}} \right]\]
Simplifying it we get:-
\[LHS = \dfrac{3}{{16}}\]
Now, since \[RHS = \dfrac{3}{{16}}\]
Hence, \[LHS = RHS\]
Hence proved.
Note: In part (ii) students can also, use the following identities to solve \[\dfrac{{\sqrt 3 }}{2}\left[ {\sin {{20}^ \circ }\sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)} \right]\]but it would be a bit lengthy and tedious as we would have to evaluate the value of \[\sin {20^ \circ }\]
The formulas are:-
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
The identities we will use are:-
\[\sin 2\theta = 2\sin \theta \cos \theta \]
\[\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[{\cos ^2}\theta + {\sin ^2}\theta = 1\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
\[\sin A\sin \left( {{{60}^ \circ } - A} \right)\sin \left( {{{60}^ \circ } + A} \right) = \dfrac{1}{4}\sin 3A\]
Complete step-by-step answer:
Let us first consider part (i)
(i) \[\dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
Let us consider the left hand side we get:
\[LHS = \dfrac{{\cos A}}{{1 - \sin A}}\]………………………. (1)
Now we know that:-
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Hence, \[\sin A = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}\]
Also, we know that:-
\[\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
Hence, \[\cos A = {\cos ^2}\dfrac{A}{2} - {\sin ^2}\dfrac{A}{2}\]
Putting these values in equation 1 we get:-
\[LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{1 - 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
Now we know that:-
\[{\cos ^2}\theta + {\sin ^2}\theta = 1\]
Hence,
\[{\cos ^2}\dfrac{A}{2} + {\sin ^2}\dfrac{A}{2} = 1\]
Substituting this value in the above equation we get:-
\[LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{{{\cos }^2}\dfrac{A}{2} + {{\sin }^2}\dfrac{A}{2} - 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
Now we know that:-
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Applying this identity in the denominator we get:-
\[LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}^2}}}\]
Now applying the following identity in the numerator:-
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
We get:-
\[LHS = \dfrac{{\left( {\cos \dfrac{A}{2} + \sin \dfrac{A}{2}} \right)\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}}{{{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}^2}}}\]
Cancelling the terms we get:-
\[LHS = \dfrac{{\left( {\cos \dfrac{A}{2} + \sin \dfrac{A}{2}} \right)}}{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}}\]
Now dividing the numerator and the denominator by \[\cos \dfrac{A}{2}\] we get:-
\[LHS = \dfrac{{\left( {\dfrac{{\cos \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} + \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}}} \right)}}{{\left( {\dfrac{{\cos \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} - \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}}} \right)}}\]
Simplify it further we get:-
\[LHS = \dfrac{{\left( {1 + \tan \dfrac{A}{2}} \right)}}{{\left( {1 - \left( 1 \right)\tan \dfrac{A}{2}} \right)}}\]
Now we know that:-
\[\tan \dfrac{\pi }{4} = 1\]
Substituting this value above equation we get:-
\[LHS = \dfrac{{\left( {\tan \dfrac{\pi }{4} + \tan \dfrac{A}{2}} \right)}}{{\left( {1 - \tan \dfrac{\pi }{4}\tan \dfrac{A}{2}} \right)}}\]
Now we know that:-
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Hence, applying this identity we get:-
\[LHS = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
Also, \[RHS = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
Therefore, \[LHS = RHS\]
Hence proved.
(ii) \[\sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {80^ \circ } = \dfrac{3}{{16}}\]
Let us consider the left hand side:-
\[LHS = \sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {80^ \circ }\]
\[ \Rightarrow LHS = \sin {60^ \circ }\left[ {\sin {{20}^ \circ }\sin {{40}^ \circ }\sin {{80}^ \circ }} \right]\]
Now we know that:-
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\sin {40^ \circ } = \sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\]
\[\sin {80^ \circ } = \sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)\]
Hence substituting these values we get:-
\[LHS = \dfrac{{\sqrt 3 }}{2}\left[ {\sin {{20}^ \circ }\sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)} \right]\]
Now we know that:-
\[\sin A\sin \left( {{{60}^ \circ } - A} \right)\sin \left( {{{60}^ \circ } + A} \right) = \dfrac{1}{4}\sin 3A\]
Applying this identity in above equation we get:-
\[LHS = \dfrac{{\sqrt 3 }}{2}\left[ {\dfrac{1}{4}\sin 3\left( {{{20}^ \circ }} \right)} \right]\]
Simplifying it further we get:-
\[LHS = \dfrac{{\sqrt 3 }}{8}\left[ {\sin {{60}^ \circ }} \right]\]
We know that:-
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
Putting the value we get:-
\[LHS = \dfrac{{\sqrt 3 }}{8}\left[ {\dfrac{{\sqrt 3 }}{2}} \right]\]
Simplifying it we get:-
\[LHS = \dfrac{3}{{16}}\]
Now, since \[RHS = \dfrac{3}{{16}}\]
Hence, \[LHS = RHS\]
Hence proved.
Note: In part (ii) students can also, use the following identities to solve \[\dfrac{{\sqrt 3 }}{2}\left[ {\sin {{20}^ \circ }\sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)} \right]\]but it would be a bit lengthy and tedious as we would have to evaluate the value of \[\sin {20^ \circ }\]
The formulas are:-
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE

Who discovered the cell and how class 12 biology CBSE
