
Prove that:
(i) \[\dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
(ii) \[\sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {80^ \circ } = \dfrac{3}{{16}}\]
Answer
589.2k+ views
Hint: Here we will use various identities and values of certain trigonometric ratios.
The identities we will use are:-
\[\sin 2\theta = 2\sin \theta \cos \theta \]
\[\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[{\cos ^2}\theta + {\sin ^2}\theta = 1\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
\[\sin A\sin \left( {{{60}^ \circ } - A} \right)\sin \left( {{{60}^ \circ } + A} \right) = \dfrac{1}{4}\sin 3A\]
Complete step-by-step answer:
Let us first consider part (i)
(i) \[\dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
Let us consider the left hand side we get:
\[LHS = \dfrac{{\cos A}}{{1 - \sin A}}\]………………………. (1)
Now we know that:-
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Hence, \[\sin A = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}\]
Also, we know that:-
\[\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
Hence, \[\cos A = {\cos ^2}\dfrac{A}{2} - {\sin ^2}\dfrac{A}{2}\]
Putting these values in equation 1 we get:-
\[LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{1 - 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
Now we know that:-
\[{\cos ^2}\theta + {\sin ^2}\theta = 1\]
Hence,
\[{\cos ^2}\dfrac{A}{2} + {\sin ^2}\dfrac{A}{2} = 1\]
Substituting this value in the above equation we get:-
\[LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{{{\cos }^2}\dfrac{A}{2} + {{\sin }^2}\dfrac{A}{2} - 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
Now we know that:-
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Applying this identity in the denominator we get:-
\[LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}^2}}}\]
Now applying the following identity in the numerator:-
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
We get:-
\[LHS = \dfrac{{\left( {\cos \dfrac{A}{2} + \sin \dfrac{A}{2}} \right)\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}}{{{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}^2}}}\]
Cancelling the terms we get:-
\[LHS = \dfrac{{\left( {\cos \dfrac{A}{2} + \sin \dfrac{A}{2}} \right)}}{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}}\]
Now dividing the numerator and the denominator by \[\cos \dfrac{A}{2}\] we get:-
\[LHS = \dfrac{{\left( {\dfrac{{\cos \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} + \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}}} \right)}}{{\left( {\dfrac{{\cos \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} - \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}}} \right)}}\]
Simplify it further we get:-
\[LHS = \dfrac{{\left( {1 + \tan \dfrac{A}{2}} \right)}}{{\left( {1 - \left( 1 \right)\tan \dfrac{A}{2}} \right)}}\]
Now we know that:-
\[\tan \dfrac{\pi }{4} = 1\]
Substituting this value above equation we get:-
\[LHS = \dfrac{{\left( {\tan \dfrac{\pi }{4} + \tan \dfrac{A}{2}} \right)}}{{\left( {1 - \tan \dfrac{\pi }{4}\tan \dfrac{A}{2}} \right)}}\]
Now we know that:-
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Hence, applying this identity we get:-
\[LHS = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
Also, \[RHS = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
Therefore, \[LHS = RHS\]
Hence proved.
(ii) \[\sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {80^ \circ } = \dfrac{3}{{16}}\]
Let us consider the left hand side:-
\[LHS = \sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {80^ \circ }\]
\[ \Rightarrow LHS = \sin {60^ \circ }\left[ {\sin {{20}^ \circ }\sin {{40}^ \circ }\sin {{80}^ \circ }} \right]\]
Now we know that:-
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\sin {40^ \circ } = \sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\]
\[\sin {80^ \circ } = \sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)\]
Hence substituting these values we get:-
\[LHS = \dfrac{{\sqrt 3 }}{2}\left[ {\sin {{20}^ \circ }\sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)} \right]\]
Now we know that:-
\[\sin A\sin \left( {{{60}^ \circ } - A} \right)\sin \left( {{{60}^ \circ } + A} \right) = \dfrac{1}{4}\sin 3A\]
Applying this identity in above equation we get:-
\[LHS = \dfrac{{\sqrt 3 }}{2}\left[ {\dfrac{1}{4}\sin 3\left( {{{20}^ \circ }} \right)} \right]\]
Simplifying it further we get:-
\[LHS = \dfrac{{\sqrt 3 }}{8}\left[ {\sin {{60}^ \circ }} \right]\]
We know that:-
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
Putting the value we get:-
\[LHS = \dfrac{{\sqrt 3 }}{8}\left[ {\dfrac{{\sqrt 3 }}{2}} \right]\]
Simplifying it we get:-
\[LHS = \dfrac{3}{{16}}\]
Now, since \[RHS = \dfrac{3}{{16}}\]
Hence, \[LHS = RHS\]
Hence proved.
Note: In part (ii) students can also, use the following identities to solve \[\dfrac{{\sqrt 3 }}{2}\left[ {\sin {{20}^ \circ }\sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)} \right]\]but it would be a bit lengthy and tedious as we would have to evaluate the value of \[\sin {20^ \circ }\]
The formulas are:-
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
The identities we will use are:-
\[\sin 2\theta = 2\sin \theta \cos \theta \]
\[\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
\[{\cos ^2}\theta + {\sin ^2}\theta = 1\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
\[\sin A\sin \left( {{{60}^ \circ } - A} \right)\sin \left( {{{60}^ \circ } + A} \right) = \dfrac{1}{4}\sin 3A\]
Complete step-by-step answer:
Let us first consider part (i)
(i) \[\dfrac{{\cos A}}{{1 - \sin A}} = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
Let us consider the left hand side we get:
\[LHS = \dfrac{{\cos A}}{{1 - \sin A}}\]………………………. (1)
Now we know that:-
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Hence, \[\sin A = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}\]
Also, we know that:-
\[\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
Hence, \[\cos A = {\cos ^2}\dfrac{A}{2} - {\sin ^2}\dfrac{A}{2}\]
Putting these values in equation 1 we get:-
\[LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{1 - 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
Now we know that:-
\[{\cos ^2}\theta + {\sin ^2}\theta = 1\]
Hence,
\[{\cos ^2}\dfrac{A}{2} + {\sin ^2}\dfrac{A}{2} = 1\]
Substituting this value in the above equation we get:-
\[LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{{{\cos }^2}\dfrac{A}{2} + {{\sin }^2}\dfrac{A}{2} - 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}}\]
Now we know that:-
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Applying this identity in the denominator we get:-
\[LHS = \dfrac{{{{\cos }^2}\dfrac{A}{2} - {{\sin }^2}\dfrac{A}{2}}}{{{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}^2}}}\]
Now applying the following identity in the numerator:-
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
We get:-
\[LHS = \dfrac{{\left( {\cos \dfrac{A}{2} + \sin \dfrac{A}{2}} \right)\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}}{{{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}^2}}}\]
Cancelling the terms we get:-
\[LHS = \dfrac{{\left( {\cos \dfrac{A}{2} + \sin \dfrac{A}{2}} \right)}}{{\left( {\cos \dfrac{A}{2} - \sin \dfrac{A}{2}} \right)}}\]
Now dividing the numerator and the denominator by \[\cos \dfrac{A}{2}\] we get:-
\[LHS = \dfrac{{\left( {\dfrac{{\cos \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} + \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}}} \right)}}{{\left( {\dfrac{{\cos \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}} - \dfrac{{\sin \dfrac{A}{2}}}{{\cos \dfrac{A}{2}}}} \right)}}\]
Simplify it further we get:-
\[LHS = \dfrac{{\left( {1 + \tan \dfrac{A}{2}} \right)}}{{\left( {1 - \left( 1 \right)\tan \dfrac{A}{2}} \right)}}\]
Now we know that:-
\[\tan \dfrac{\pi }{4} = 1\]
Substituting this value above equation we get:-
\[LHS = \dfrac{{\left( {\tan \dfrac{\pi }{4} + \tan \dfrac{A}{2}} \right)}}{{\left( {1 - \tan \dfrac{\pi }{4}\tan \dfrac{A}{2}} \right)}}\]
Now we know that:-
\[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Hence, applying this identity we get:-
\[LHS = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
Also, \[RHS = \tan \left( {\dfrac{\pi }{4} + \dfrac{A}{2}} \right)\]
Therefore, \[LHS = RHS\]
Hence proved.
(ii) \[\sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {80^ \circ } = \dfrac{3}{{16}}\]
Let us consider the left hand side:-
\[LHS = \sin {20^ \circ }\sin {40^ \circ }\sin {60^ \circ }\sin {80^ \circ }\]
\[ \Rightarrow LHS = \sin {60^ \circ }\left[ {\sin {{20}^ \circ }\sin {{40}^ \circ }\sin {{80}^ \circ }} \right]\]
Now we know that:-
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
\[\sin {40^ \circ } = \sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\]
\[\sin {80^ \circ } = \sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)\]
Hence substituting these values we get:-
\[LHS = \dfrac{{\sqrt 3 }}{2}\left[ {\sin {{20}^ \circ }\sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)} \right]\]
Now we know that:-
\[\sin A\sin \left( {{{60}^ \circ } - A} \right)\sin \left( {{{60}^ \circ } + A} \right) = \dfrac{1}{4}\sin 3A\]
Applying this identity in above equation we get:-
\[LHS = \dfrac{{\sqrt 3 }}{2}\left[ {\dfrac{1}{4}\sin 3\left( {{{20}^ \circ }} \right)} \right]\]
Simplifying it further we get:-
\[LHS = \dfrac{{\sqrt 3 }}{8}\left[ {\sin {{60}^ \circ }} \right]\]
We know that:-
\[\sin {60^ \circ } = \dfrac{{\sqrt 3 }}{2}\]
Putting the value we get:-
\[LHS = \dfrac{{\sqrt 3 }}{8}\left[ {\dfrac{{\sqrt 3 }}{2}} \right]\]
Simplifying it we get:-
\[LHS = \dfrac{3}{{16}}\]
Now, since \[RHS = \dfrac{3}{{16}}\]
Hence, \[LHS = RHS\]
Hence proved.
Note: In part (ii) students can also, use the following identities to solve \[\dfrac{{\sqrt 3 }}{2}\left[ {\sin {{20}^ \circ }\sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)\sin \left( {{{60}^ \circ } + {{20}^ \circ }} \right)} \right]\]but it would be a bit lengthy and tedious as we would have to evaluate the value of \[\sin {20^ \circ }\]
The formulas are:-
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

