
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}\times \overrightarrow{b}]\] is equal to
A. \[\left| \overrightarrow{a}\times \overrightarrow{b} \right|\]
B. \[{{\left| \overrightarrow{a}\times \overrightarrow{b} \right|}^{2}}\]
C. $0$
D. None of these
Answer
232.8k+ views
Hint: In the above question, we are asked to calculate the value of the matrix \[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}\times \overrightarrow{b}]\], whose value can be easily calculated using the concept of the magnitude of a vector and the concept of the scalar triple product.
Formula used: The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Complete step by step solution: Here, we are asked about the value of the determinant of the given matrix. The value of the determinant can be calculated using the concept of the scalar triple product.
In this concept, there are three vectors given of which any two are cross-multiplied and then the result of that product is multiplied with the other vector through dot multiplication.
Here, in the above question, we can use the same concept. The three given vectors are \[\overrightarrow{a}\], \[\overrightarrow{b}\], and \[\overrightarrow{a}\times \overrightarrow{b}\].
Then, the given vector is
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}\times \overrightarrow{b}]=(\overrightarrow{a}\times \overrightarrow{b})\cdot (\overrightarrow{a}\times \overrightarrow{b}) \\
& \text{ }={{\left| \overrightarrow{a}\times \overrightarrow{b} \right|}^{2}} \\
\end{align}\]
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see that using the concept of the scalar triple product we can easily calculate the determinant of any matrix in which the vectors which are given are coplanar. And take care of the vector identities too.
Formula used: The dot product of two vectors is
$\overrightarrow{a}\cdot \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos (\overrightarrow{a},\overrightarrow{b})$
The cross-product of two vectors is
$\overrightarrow{a}\times \overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\sin (\overrightarrow{a},\overrightarrow{b})\overrightarrow{n}$
Complete step by step solution: Here, we are asked about the value of the determinant of the given matrix. The value of the determinant can be calculated using the concept of the scalar triple product.
In this concept, there are three vectors given of which any two are cross-multiplied and then the result of that product is multiplied with the other vector through dot multiplication.
Here, in the above question, we can use the same concept. The three given vectors are \[\overrightarrow{a}\], \[\overrightarrow{b}\], and \[\overrightarrow{a}\times \overrightarrow{b}\].
Then, the given vector is
\[\begin{align}
& [\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}\times \overrightarrow{b}]=(\overrightarrow{a}\times \overrightarrow{b})\cdot (\overrightarrow{a}\times \overrightarrow{b}) \\
& \text{ }={{\left| \overrightarrow{a}\times \overrightarrow{b} \right|}^{2}} \\
\end{align}\]
Thus, Option (B) is correct.
Additional Information: Important vector identities for solving vector equations are:
\[\overrightarrow{a}\times \overrightarrow{a}=0\]
\[[\overrightarrow{a}\text{ }\overrightarrow{a}\text{ }\overrightarrow{b}]=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{a}]=[\overrightarrow{b}\text{ }\overrightarrow{a}\text{ }\overrightarrow{a}]=0\]
\[\begin{align}
& \overrightarrow{i}\cdot \overrightarrow{i}=\overrightarrow{j}\cdot \overrightarrow{j}=\overrightarrow{k}\cdot \overrightarrow{k}=1 \\
& \overrightarrow{i}\times \overrightarrow{j}=\overrightarrow{k} \\
& \overrightarrow{j}\times \overrightarrow{k}=\overrightarrow{i} \\
& \overrightarrow{k}\times \overrightarrow{i}=\overrightarrow{j} \\
\end{align}\]
Note: We can see that using the concept of the scalar triple product we can easily calculate the determinant of any matrix in which the vectors which are given are coplanar. And take care of the vector identities too.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

