
On the real line \[\mathbb{R}\], we define two functions $f$ and $g$ as follows:
$
f(x) = \min \{ x - \left[ x \right],1 - x + \left[ x \right]\} , \\
g(x) = \max \{ x - \left[ x \right],1 - x + \left[ x \right]\} \\
$
where $\left[ x \right]$ denotes the largest integer not exceeding $x$. The positive integer $n$ for which $\int\limits_0^n {(g(x) - f(x))dx = 100} $ is?
A) $100$
B) $198$
C) $200$
D) $202$
Answer
233.1k+ views
Hint: Since $f(x),g(x)$ represent the minimum and maximum of $\{ x - \left[ x \right],1 - x + \left[ x \right]\} $, we can use properties of greatest integer function. Then by splitting the integral accordingly we can simplify the expression. Finally by integration we can find the value of $n$.
Useful formula:
For every real number $x$, $\left[ x \right]$ is the greatest integer less than or equal to $x$. So, $0 \leqslant x - \left[ x \right] < 1$.
Integral can be split, that is if $a < b < c,\int\limits_a^c {f(x)dx = \int\limits_a^b {f(x)dx + \int\limits_b^c {f(x)dx} } } $
Also, $\int\limits_0^n {(g(x) - f(x))dx = n\int\limits_0^1 {(g(x) - f(x))dx} } $
Complete step by step solution:
Given, $f(x) = \min \{ x - \left[ x \right],1 - x + \left[ x \right]\} ,g(x) = \max \{ x - \left[ x \right],1 - x + \left[ x \right]\} $
Let $x - \left[ x \right] = f$.
So, we have, $f(x) = \min \{ f,1 - f\} ,g(x) = \max \{ f,1 - f\} $
By the definition of greatest integer function that is $\left[ x \right]$,
We have, $0 \leqslant x - \left[ x \right] < 1 \Rightarrow 0 \leqslant f < 1$
So there are two cases. $0 < f < 0.5$ and $0.5 < f < 1$.
If $0 < f < 0.5$, then $
f(x) = \min \{ f,1 - f\} = f \\
g(x) = \max \{ f,1 - f\} = 1 - f \\
$
and if $0.5 < f < 1$, then $
f(x) = \min \{ f,1 - f\} = 1 - f \\
g(x) = \max \{ f,1 - f\} = f \\
$
We are asked to find $n$ such that$\int\limits_0^n {(g(x) - f(x))dx = 100} $
Using the results in integration we have,
$\int\limits_0^n {(g(x) - f(x))dx = n\int\limits_0^1 {(g(x) - f(x))dx} } $
$\int\limits_0^1 {dx} = \int\limits_0^{0.5} {dx + \int\limits_{0.5}^1 {dx} } $
So we have,
$\int\limits_0^n {(g(x) - f(x))dx = n(\int\limits_0^{0.5} {(g(x) - f(x))dx} } + \int\limits_{0.5}^1 {(g(x) - f(x))dx} )$
$\int\limits_0^n {(g(x) - f(x))dx = n\int\limits_0^{0.5} {(1 - 2x)dx} } + n\int\limits_{0.5}^1 {(2x - 1)dx} $
Integrating the above equation we get,
$\int\limits_0^n {(g(x) - f(x))dx = n[x - \dfrac{{2{x^2}}}{2}} ]_0^{0.5} + n[\dfrac{{2{x^2}}}{2} - x]_{0.5}^1$
Simplifying we have,
$\int\limits_0^n {(g(x) - f(x))dx = n[x - {x^2}} ]_0^{0.5} + n[{x^2} - x]_{0.5}^1$
Applying the limits,
$\int\limits_0^n {(g(x) - f(x))dx = n[0.5 - 0.25 - (0 - 0)} ] + n[1 - 1 - (0.25 - 0.5)]$
$ \Rightarrow \int\limits_0^n {(g(x) - f(x))dx = n[0.5 - 0.25} ] + n[ - (0.25 - 0.5)]$
Simplifying the above equation we have,
\[ \Rightarrow \int\limits_0^n {(g(x) - f(x))dx = 0.25n} + 0.25n = 0.5n\]
We are asked to find $n$ such that$\int\limits_0^n {(g(x) - f(x))dx = 100} $
So by above equation we have,
$0.5n = 100$
Dividing both sides we get,
$ \Rightarrow n = \dfrac{{100}}{{0.5}} = 200$
$\therefore n = 200$
Therefore the answer is option C.
Additional information:
Greatest integer function is also called the floor function. There is also another function called ceiling function, which is defined as the lowest integer greater than or equal to the given number.
Note: We should be careful in splitting the integral. Upper limit of the first integral must be equal to the lower limit of the second integral. Otherwise, some portions will be missed from integration or extra portions will be added.
Useful formula:
For every real number $x$, $\left[ x \right]$ is the greatest integer less than or equal to $x$. So, $0 \leqslant x - \left[ x \right] < 1$.
Integral can be split, that is if $a < b < c,\int\limits_a^c {f(x)dx = \int\limits_a^b {f(x)dx + \int\limits_b^c {f(x)dx} } } $
Also, $\int\limits_0^n {(g(x) - f(x))dx = n\int\limits_0^1 {(g(x) - f(x))dx} } $
Complete step by step solution:
Given, $f(x) = \min \{ x - \left[ x \right],1 - x + \left[ x \right]\} ,g(x) = \max \{ x - \left[ x \right],1 - x + \left[ x \right]\} $
Let $x - \left[ x \right] = f$.
So, we have, $f(x) = \min \{ f,1 - f\} ,g(x) = \max \{ f,1 - f\} $
By the definition of greatest integer function that is $\left[ x \right]$,
We have, $0 \leqslant x - \left[ x \right] < 1 \Rightarrow 0 \leqslant f < 1$
So there are two cases. $0 < f < 0.5$ and $0.5 < f < 1$.
If $0 < f < 0.5$, then $
f(x) = \min \{ f,1 - f\} = f \\
g(x) = \max \{ f,1 - f\} = 1 - f \\
$
and if $0.5 < f < 1$, then $
f(x) = \min \{ f,1 - f\} = 1 - f \\
g(x) = \max \{ f,1 - f\} = f \\
$
We are asked to find $n$ such that$\int\limits_0^n {(g(x) - f(x))dx = 100} $
Using the results in integration we have,
$\int\limits_0^n {(g(x) - f(x))dx = n\int\limits_0^1 {(g(x) - f(x))dx} } $
$\int\limits_0^1 {dx} = \int\limits_0^{0.5} {dx + \int\limits_{0.5}^1 {dx} } $
So we have,
$\int\limits_0^n {(g(x) - f(x))dx = n(\int\limits_0^{0.5} {(g(x) - f(x))dx} } + \int\limits_{0.5}^1 {(g(x) - f(x))dx} )$
$\int\limits_0^n {(g(x) - f(x))dx = n\int\limits_0^{0.5} {(1 - 2x)dx} } + n\int\limits_{0.5}^1 {(2x - 1)dx} $
Integrating the above equation we get,
$\int\limits_0^n {(g(x) - f(x))dx = n[x - \dfrac{{2{x^2}}}{2}} ]_0^{0.5} + n[\dfrac{{2{x^2}}}{2} - x]_{0.5}^1$
Simplifying we have,
$\int\limits_0^n {(g(x) - f(x))dx = n[x - {x^2}} ]_0^{0.5} + n[{x^2} - x]_{0.5}^1$
Applying the limits,
$\int\limits_0^n {(g(x) - f(x))dx = n[0.5 - 0.25 - (0 - 0)} ] + n[1 - 1 - (0.25 - 0.5)]$
$ \Rightarrow \int\limits_0^n {(g(x) - f(x))dx = n[0.5 - 0.25} ] + n[ - (0.25 - 0.5)]$
Simplifying the above equation we have,
\[ \Rightarrow \int\limits_0^n {(g(x) - f(x))dx = 0.25n} + 0.25n = 0.5n\]
We are asked to find $n$ such that$\int\limits_0^n {(g(x) - f(x))dx = 100} $
So by above equation we have,
$0.5n = 100$
Dividing both sides we get,
$ \Rightarrow n = \dfrac{{100}}{{0.5}} = 200$
$\therefore n = 200$
Therefore the answer is option C.
Additional information:
Greatest integer function is also called the floor function. There is also another function called ceiling function, which is defined as the lowest integer greater than or equal to the given number.
Note: We should be careful in splitting the integral. Upper limit of the first integral must be equal to the lower limit of the second integral. Otherwise, some portions will be missed from integration or extra portions will be added.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

