
Molecular velocities of two gases at the same temperature are \[{U_1}\] and \[{U_2}\]and their molecular masses \[{m_1}\] and \[{m_2}\] respectively. Which of the following expressions is correct?
A. \[\dfrac{{{m_1}}}{{{U_1}^2}} = \dfrac{{{m_2}}}{{{U_2}^2}}\]
B. \[{m_1}{U_1} = {m_2}{U_2}\]
C. \[\dfrac{{{m_1}}}{{{U_1}}} = \dfrac{{{m_2}}}{{{U_2}}}\]
D. \[{m_1}{U_1}^2 = {m_2}{U_2}^2\]
Answer
233.1k+ views
Hint: The distance covered by a molecule of gas in one unit of time is called molecular velocity. The molecular velocities of different molecules are different because of differences in molecular masses of them.
Complete Step by Step Solution:
The formula used for calculation of molecular velocity is \[{u_{rms}} = \sqrt {\dfrac{{3RT}}{M}} \] , where, R stands for gas constant, T stands for temperature, M stands for molar mass of the gas.
Here, two gases are given.
For gas 1,
Molecular mass = \[{m_1}\]
Molecular velocity = \[{U_1}\]
For gas 2,
Molecular mass = \[{m_2}\]
Molecular velocity = \[{U_2}\]
For 1st gas,
\[{u_1} = \sqrt {\dfrac{{3RT}}{{{m_1}}}} \]
\[T = \dfrac{{{u_1}^2{m_1}}}{{3RT}}\] …… (1)
For 2nd gas,
\[{u_2} = \sqrt {\dfrac{{3RT}}{{{m_2}}}} \]
\[T = \dfrac{{{u_2}^2{m_2}}}{{3RT}}\] …… (2)
From (1) and (2),
\[\dfrac{{{u_1}^2{m_1}}}{{3RT}} = \dfrac{{{u_2}^2{m_2}}}{{3RT}}\]
\[{u_1}^2{m_1} = {u_2}^2{m_2}\]
Therefore, option D is right.
Additional Information: Let’s understand how molecular mass is responsible for rms velocity. The rms velocity can be find out by the following formula, \[{v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} \] .As R is gas constant and if given that all gases are at same temperature, molar masses of each gas decide its rms speed. So, \[{v_{rms}} = \sqrt {\dfrac{1}{M}} \], that means, rms velocity is indirectly proportional to molar mass of gases. So, the gas that possesses the highest molar mass has the lowest rms velocity.
Note: It is to be noted that average velocity is different from rms velocity. Average velocity defines the arithmetic mean calculation of velocities of different gaseous molecules at a particular temperature. The average velocity can be found by the formula \[{v_{av}} = \sqrt {\dfrac{{8RT}}{{\pi M}}} \] . The rms velocity is always greater than average velocity.
Complete Step by Step Solution:
The formula used for calculation of molecular velocity is \[{u_{rms}} = \sqrt {\dfrac{{3RT}}{M}} \] , where, R stands for gas constant, T stands for temperature, M stands for molar mass of the gas.
Here, two gases are given.
For gas 1,
Molecular mass = \[{m_1}\]
Molecular velocity = \[{U_1}\]
For gas 2,
Molecular mass = \[{m_2}\]
Molecular velocity = \[{U_2}\]
For 1st gas,
\[{u_1} = \sqrt {\dfrac{{3RT}}{{{m_1}}}} \]
\[T = \dfrac{{{u_1}^2{m_1}}}{{3RT}}\] …… (1)
For 2nd gas,
\[{u_2} = \sqrt {\dfrac{{3RT}}{{{m_2}}}} \]
\[T = \dfrac{{{u_2}^2{m_2}}}{{3RT}}\] …… (2)
From (1) and (2),
\[\dfrac{{{u_1}^2{m_1}}}{{3RT}} = \dfrac{{{u_2}^2{m_2}}}{{3RT}}\]
\[{u_1}^2{m_1} = {u_2}^2{m_2}\]
Therefore, option D is right.
Additional Information: Let’s understand how molecular mass is responsible for rms velocity. The rms velocity can be find out by the following formula, \[{v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} \] .As R is gas constant and if given that all gases are at same temperature, molar masses of each gas decide its rms speed. So, \[{v_{rms}} = \sqrt {\dfrac{1}{M}} \], that means, rms velocity is indirectly proportional to molar mass of gases. So, the gas that possesses the highest molar mass has the lowest rms velocity.
Note: It is to be noted that average velocity is different from rms velocity. Average velocity defines the arithmetic mean calculation of velocities of different gaseous molecules at a particular temperature. The average velocity can be found by the formula \[{v_{av}} = \sqrt {\dfrac{{8RT}}{{\pi M}}} \] . The rms velocity is always greater than average velocity.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

For pure water A pH increases while pOH decreases with class 11 chemistry JEE_Main

Which of the following is most stable A Sn2+ B Ge2+ class 11 chemistry JEE_Main

Other Pages
NCERT Solutions For Class 11 Chemistry in Hindi Chapter 8 Redox Reactions (2025-26)

An ideal gas is at pressure P and temperature T in class 11 chemistry JEE_Main

In Carius method of estimation of halogens 015g of class 11 chemistry JEE_Main

Understanding Collisions: Types and Examples for Students

NCERT Solutions For Class 11 Chemistry in Hindi Chapter 1 Some Basic Concepts of Chemistry (2025-26)

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

