
What is the minimum number of bulbs, each marked $60W$ , $40V$ that can work safely when connected in series with a 240V mains supply?
A. $2$
B. $4$
C. $6$
D. $8$
Answer
233.1k+ views
Hint Firstly, we will calculate the resistance of each bulb and maximum current that can flow through the bulb without damaging it. Then we will find the minimum resistance required in the circuit. We will compare the two results to get the required number of bulbs.
Complete Step by step solution
Given: voltage of supply= ${V_s} = 240V$
Voltage required for bulb= $V = 40V$
Power of each bulb= $P = 60W$
Now resistance of each bulb is given by,
$\because R = \dfrac{{{V^2}}}{P}$
On Putting value, we get,
$R = \dfrac{{{{40}^2}}}{{60}} = 26.67\Omega ......(1)$
Now maximum current that can flow through bulb without damaging it is given by,
$
{I_{\max }} = \dfrac{P}{V} \\
{I_{\max }} = \dfrac{{60}}{{40}} \\
{\operatorname{I} _{\max }} = 1.5A \\
$
$
\because {I_{\max }} = 1.5A \\
\\
$
Therefore, minimum resistance required in the circuit is,
${R_{\min }} = \dfrac{{{V_s}}}{{{I_{\max }}}}$
$\therefore {R_{\min }} = \dfrac{{240}}{{1.5}} = 160\Omega ......(2)$
Let n number of bulbs be connected in series.
Then resistance of n bulbs is equal to ${R_{eq}} = n26.67......(3)$
Using (2) and (3) we get,
$n26.67 \leqslant 160$
From above,
$n = 6$
Hence the minimum number of bulbs required is 6.
Option (C) is correct.
Note Above we have calculated the maximum value of current that flows through each bulb without damaging it. If we provide more than that value of current that would cause heating effects and would damage the bulbs.
Complete Step by step solution
Given: voltage of supply= ${V_s} = 240V$
Voltage required for bulb= $V = 40V$
Power of each bulb= $P = 60W$
Now resistance of each bulb is given by,
$\because R = \dfrac{{{V^2}}}{P}$
On Putting value, we get,
$R = \dfrac{{{{40}^2}}}{{60}} = 26.67\Omega ......(1)$
Now maximum current that can flow through bulb without damaging it is given by,
$
{I_{\max }} = \dfrac{P}{V} \\
{I_{\max }} = \dfrac{{60}}{{40}} \\
{\operatorname{I} _{\max }} = 1.5A \\
$
$
\because {I_{\max }} = 1.5A \\
\\
$
Therefore, minimum resistance required in the circuit is,
${R_{\min }} = \dfrac{{{V_s}}}{{{I_{\max }}}}$
$\therefore {R_{\min }} = \dfrac{{240}}{{1.5}} = 160\Omega ......(2)$
Let n number of bulbs be connected in series.
Then resistance of n bulbs is equal to ${R_{eq}} = n26.67......(3)$
Using (2) and (3) we get,
$n26.67 \leqslant 160$
From above,
$n = 6$
Hence the minimum number of bulbs required is 6.
Option (C) is correct.
Note Above we have calculated the maximum value of current that flows through each bulb without damaging it. If we provide more than that value of current that would cause heating effects and would damage the bulbs.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

