
Let the positive numbers $a,b,c,d$ be in A.P. then $abc, abd, acd, bcd$ are
(a) not in A.P./G.P./H.P.
(b) in A.P.
(C) in G.P.
(d) in H.P.
Answer
232.8k+ views
Hint: Try to obtain the required terms from given terms using properties of sequences.
Since ,it is given that $a,b,c,d$ are in A.P., then $d,c,b,a$ are also in A.P.
A series of terms is known as a H.P. series when the reciprocals of elements are
in arithmetic progression or A.P.
So,
$ \Rightarrow \dfrac{1}{d},\dfrac{1}{c},\dfrac{1}{b},\dfrac{1}{a}$ are in H.P.
Thus, after multiplying the above terms with $abcd$,
We get,
$ \Rightarrow \dfrac{{abcd}}{d},\dfrac{{abcd}}{c},\dfrac{{abcd}}{b},\frac{{abcd}}{a}$ are in H.P.
$ \Rightarrow abc, abd, acd, bcd$ are in H.P.
Hence, the required answer is (d) in H.P.
Note: To solve these types of questions, perform the specific manipulations and obtain the required solution.
Since ,it is given that $a,b,c,d$ are in A.P., then $d,c,b,a$ are also in A.P.
A series of terms is known as a H.P. series when the reciprocals of elements are
in arithmetic progression or A.P.
So,
$ \Rightarrow \dfrac{1}{d},\dfrac{1}{c},\dfrac{1}{b},\dfrac{1}{a}$ are in H.P.
Thus, after multiplying the above terms with $abcd$,
We get,
$ \Rightarrow \dfrac{{abcd}}{d},\dfrac{{abcd}}{c},\dfrac{{abcd}}{b},\frac{{abcd}}{a}$ are in H.P.
$ \Rightarrow abc, abd, acd, bcd$ are in H.P.
Hence, the required answer is (d) in H.P.
Note: To solve these types of questions, perform the specific manipulations and obtain the required solution.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

