
Let $f:R \to R$ be a continuous function which satisfies $f\left( x \right) = \int_0^x {f\left( t \right)dt} $. Then the value of $f\left( {\ln 5} \right)$ is,
Answer
509.1k+ views
Hint: In this particular question differentiate the given equation w.r.t x according to the property that $\dfrac{d}{{dx}}\left( {\int_a^b {f\left( x \right)dx} } \right) = {\left( {f\left( x \right)} \right)_{x = b}} - {\left( {f\left( x \right)} \right)_{x = a}}$ so use these concepts to reach the solution of the question.
Complete step-by-step solution:
Given equation:
$f\left( x \right) = \int_0^x {f\left( t \right)dt} $............... (1)
Now we have to find out the value of $f\left( {\ln 5} \right)$.
So, differentiate equation (1) w.r.t x we have,
$\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {\int_0^x {f\left( t \right)dt} } \right)$
Now as we know that $\dfrac{d}{{dx}}\left( {\int_a^b {f\left( x \right)dx} } \right) = {\left( {f\left( x \right)} \right)_{x = b}} - {\left( {f\left( x \right)} \right)_{x = a}}$ so use this property we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = {\left( {f\left( t \right)} \right)_{t = x}} - {\left( {f\left( t \right)} \right)_{t = 0}}$
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f\left( x \right) - f\left( 0 \right)$.............. (2)
Now in equation (1) substitute x = 0 we have,
$ \Rightarrow f\left( 0 \right) = \int_0^0 {f\left( t \right)dt} $
Now as we know that $\int_o^o {f\left( x \right)dx} = 0$ irrespective of the function.
$ \Rightarrow f\left( 0 \right) = 0$................ (3)
Now substitute this value in equation (2) we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f\left( x \right)$
Now let f (x) = y
$ \Rightarrow \dfrac{{dy}}{{dx}} = y$
$ \Rightarrow \dfrac{{dy}}{y} = dx$
Now integrate on both sides we have,
$ \Rightarrow \int {\dfrac{{dy}}{y}} = \int {dx} $
Now as we know that $\int {\dfrac{1}{x}dx} = \ln x + c,\int {1dx = x + c} $, where C is some arbitrary integration constant.
$ \Rightarrow \ln y + {c_1} = x + {c_2}$
$ \Rightarrow \ln y = x + {c_2} - {c_1}$
Let, ${c_2} - {c_1} = C$ new integration constant so we have,
$ \Rightarrow \ln y = x + C$
Now take antilog on both sides we have,
$ \Rightarrow y = {e^{x + C}}$
$ \Rightarrow y = {e^C}{e^x}$
Now let ${e^C} = A$ new constant.
$ \Rightarrow y = A{e^x}$
Now substitute the value of y we have,
$ \Rightarrow f\left( x \right) = A{e^x}$............... (4)
Now substitute x = 0 we have,
$ \Rightarrow f\left( 0 \right) = A{e^0} = A$
Now from equation (3) f (0) = 0 so we have,
$ \Rightarrow A = 0$
Now from equation (4), we have,
$ \Rightarrow f\left( x \right) = 0$
Now substitute in place of x, x = ln 5 so we have,
$ \Rightarrow f\left( {\ln 5} \right) = 0$
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic integration properties such as, $\int {\dfrac{1}{x}dx} = \ln x + c,\int {1dx = x + c} $, where C is some arbitrary integration constant, and always recall how to differentiate the definite integral which is stated above.
Complete step-by-step solution:
Given equation:
$f\left( x \right) = \int_0^x {f\left( t \right)dt} $............... (1)
Now we have to find out the value of $f\left( {\ln 5} \right)$.
So, differentiate equation (1) w.r.t x we have,
$\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {\int_0^x {f\left( t \right)dt} } \right)$
Now as we know that $\dfrac{d}{{dx}}\left( {\int_a^b {f\left( x \right)dx} } \right) = {\left( {f\left( x \right)} \right)_{x = b}} - {\left( {f\left( x \right)} \right)_{x = a}}$ so use this property we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = {\left( {f\left( t \right)} \right)_{t = x}} - {\left( {f\left( t \right)} \right)_{t = 0}}$
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f\left( x \right) - f\left( 0 \right)$.............. (2)
Now in equation (1) substitute x = 0 we have,
$ \Rightarrow f\left( 0 \right) = \int_0^0 {f\left( t \right)dt} $
Now as we know that $\int_o^o {f\left( x \right)dx} = 0$ irrespective of the function.
$ \Rightarrow f\left( 0 \right) = 0$................ (3)
Now substitute this value in equation (2) we have,
$ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f\left( x \right)$
Now let f (x) = y
$ \Rightarrow \dfrac{{dy}}{{dx}} = y$
$ \Rightarrow \dfrac{{dy}}{y} = dx$
Now integrate on both sides we have,
$ \Rightarrow \int {\dfrac{{dy}}{y}} = \int {dx} $
Now as we know that $\int {\dfrac{1}{x}dx} = \ln x + c,\int {1dx = x + c} $, where C is some arbitrary integration constant.
$ \Rightarrow \ln y + {c_1} = x + {c_2}$
$ \Rightarrow \ln y = x + {c_2} - {c_1}$
Let, ${c_2} - {c_1} = C$ new integration constant so we have,
$ \Rightarrow \ln y = x + C$
Now take antilog on both sides we have,
$ \Rightarrow y = {e^{x + C}}$
$ \Rightarrow y = {e^C}{e^x}$
Now let ${e^C} = A$ new constant.
$ \Rightarrow y = A{e^x}$
Now substitute the value of y we have,
$ \Rightarrow f\left( x \right) = A{e^x}$............... (4)
Now substitute x = 0 we have,
$ \Rightarrow f\left( 0 \right) = A{e^0} = A$
Now from equation (3) f (0) = 0 so we have,
$ \Rightarrow A = 0$
Now from equation (4), we have,
$ \Rightarrow f\left( x \right) = 0$
Now substitute in place of x, x = ln 5 so we have,
$ \Rightarrow f\left( {\ln 5} \right) = 0$
So this is the required answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic integration properties such as, $\int {\dfrac{1}{x}dx} = \ln x + c,\int {1dx = x + c} $, where C is some arbitrary integration constant, and always recall how to differentiate the definite integral which is stated above.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
