
Let \[f\left( x \right) = {x^n}\], \[n\] being a positive integer. Then what is the value of \[n\] for which the equality \[f'\left( {a + b} \right) = f'\left( a \right) + f'\left( b \right)\], \[f\] is valid for all \[a,b > 0\]?
A. \[0, 2\]
B. \[1, 3\]
C. \[3,4\]
D. None of these
Answer
232.8k+ views
Hint: First, differentiate the given function with respect to \[x\]. Then substitute \[a,b\] and \[a + b\] in the differential equation instead of \[x\] to get the various differential equation. In the end, substitute these three differential equations in the given equality to get the required answer.
Formula Used: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
The given function is \[f\left( x \right) = {x^n}\], \[n > 0\] and \[n\] satisfies the equality \[f'\left( {a + b} \right) = f'\left( a \right) + f'\left( b \right)\].
Let’s differentiate the given function with respect to \[x\].
\[f'\left( x \right) = n{x^{n - 1}}\]
Now substitute \[a,b\] and \[a + b\] in the above differential equation instead of \[x\].
\[f'\left( a \right) = n{\left( a \right)^{n - 1}}\]
\[f'\left( b \right) = n{\left( b \right)^{n - 1}}\]
\[f'\left( {a + b} \right) = n{\left( {a + b} \right)^{n - 1}}\]
Substitute the values of the above equations in the given inequality.
\[n{\left( {a + b} \right)^{n - 1}} = n{\left( a \right)^{n - 1}} + n{\left( b \right)^{n - 1}}\]
Cancel out the common factors from each side.
\[{\left( {a + b} \right)^{n - 1}} = {\left( a \right)^{n - 1}} + {\left( b \right)^{n - 1}}\] \[.....\left( 1 \right)\]
Now verify the values of \[n\].
Substitute \[n = 0\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{0 - 1}} = {\left( a \right)^{0 - 1}} + {\left( b \right)^{0 - 1}}\]
\[ \Rightarrow \]\[\dfrac{1}{{a + b}} = \dfrac{1}{a} + \dfrac{1}{b}\]
\[ \Rightarrow \]\[\dfrac{1}{{a + b}} \ne \dfrac{{a + b}}{{ab}}\]
So, this value is incorrect.
Substitute \[n = 1\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{1 - 1}} = {\left( a \right)^{1 - 1}} + {\left( b \right)^{1 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^0} = {\left( a \right)^0} + {\left( b \right)^0}\]
\[ \Rightarrow \]\[1 = 1 + 1\]
\[ \Rightarrow \]\[1 \ne 2\]
So, this value is incorrect.
Substitute \[n = 2\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{2 - 1}} = {\left( a \right)^{2 - 1}} + {\left( b \right)^{2 - 1}}\]
\[ \Rightarrow \]\[a + b = a + b\]
This is true.
So, this value is correct.
Substitute \[n = 3\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{3 - 1}} = {\left( a \right)^{3 - 1}} + {\left( b \right)^{3 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2}\]
\[ \Rightarrow \]\[{a^2} + {b^2} + 2ab \ne {a^2} + {b^2}\]
So, this value is incorrect.
Substitute \[n = 4\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{4 - 1}} = {\left( a \right)^{4 - 1}} + {\left( b \right)^{4 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^3} = {\left( a \right)^3} + {\left( b \right)^3}\]
\[ \Rightarrow \]\[{a^3} + {b^3} + 3ab\left( {a + b} \right) \ne {a^3} + {b^3}\]
So, this value is incorrect.
Hence the correct option is D.
Note: Students often get confused with the formula of \[{\left( {a + b} \right)^3}\]. The correct formula is \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\].
Formula Used: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
The given function is \[f\left( x \right) = {x^n}\], \[n > 0\] and \[n\] satisfies the equality \[f'\left( {a + b} \right) = f'\left( a \right) + f'\left( b \right)\].
Let’s differentiate the given function with respect to \[x\].
\[f'\left( x \right) = n{x^{n - 1}}\]
Now substitute \[a,b\] and \[a + b\] in the above differential equation instead of \[x\].
\[f'\left( a \right) = n{\left( a \right)^{n - 1}}\]
\[f'\left( b \right) = n{\left( b \right)^{n - 1}}\]
\[f'\left( {a + b} \right) = n{\left( {a + b} \right)^{n - 1}}\]
Substitute the values of the above equations in the given inequality.
\[n{\left( {a + b} \right)^{n - 1}} = n{\left( a \right)^{n - 1}} + n{\left( b \right)^{n - 1}}\]
Cancel out the common factors from each side.
\[{\left( {a + b} \right)^{n - 1}} = {\left( a \right)^{n - 1}} + {\left( b \right)^{n - 1}}\] \[.....\left( 1 \right)\]
Now verify the values of \[n\].
Substitute \[n = 0\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{0 - 1}} = {\left( a \right)^{0 - 1}} + {\left( b \right)^{0 - 1}}\]
\[ \Rightarrow \]\[\dfrac{1}{{a + b}} = \dfrac{1}{a} + \dfrac{1}{b}\]
\[ \Rightarrow \]\[\dfrac{1}{{a + b}} \ne \dfrac{{a + b}}{{ab}}\]
So, this value is incorrect.
Substitute \[n = 1\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{1 - 1}} = {\left( a \right)^{1 - 1}} + {\left( b \right)^{1 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^0} = {\left( a \right)^0} + {\left( b \right)^0}\]
\[ \Rightarrow \]\[1 = 1 + 1\]
\[ \Rightarrow \]\[1 \ne 2\]
So, this value is incorrect.
Substitute \[n = 2\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{2 - 1}} = {\left( a \right)^{2 - 1}} + {\left( b \right)^{2 - 1}}\]
\[ \Rightarrow \]\[a + b = a + b\]
This is true.
So, this value is correct.
Substitute \[n = 3\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{3 - 1}} = {\left( a \right)^{3 - 1}} + {\left( b \right)^{3 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^2} = {\left( a \right)^2} + {\left( b \right)^2}\]
\[ \Rightarrow \]\[{a^2} + {b^2} + 2ab \ne {a^2} + {b^2}\]
So, this value is incorrect.
Substitute \[n = 4\] in the equation \[\left( 1 \right)\].
\[{\left( {a + b} \right)^{4 - 1}} = {\left( a \right)^{4 - 1}} + {\left( b \right)^{4 - 1}}\]
\[ \Rightarrow \]\[{\left( {a + b} \right)^3} = {\left( a \right)^3} + {\left( b \right)^3}\]
\[ \Rightarrow \]\[{a^3} + {b^3} + 3ab\left( {a + b} \right) \ne {a^3} + {b^3}\]
So, this value is incorrect.
Hence the correct option is D.
Note: Students often get confused with the formula of \[{\left( {a + b} \right)^3}\]. The correct formula is \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

