# Let $f\left( x \right) = {\sin ^4}x + {\cos ^4}x.$ Then f is an increasing function in the interval:

$

a.{\text{ }}\left[ {\dfrac{{5\pi }}{8},{\text{ }}\dfrac{{3\pi }}{4}} \right] \\

b.{\text{ }}\left[ {\dfrac{\pi }{2},{\text{ }}\dfrac{{5\pi }}{8}} \right] \\

c.{\text{ }}\left[ {\dfrac{\pi }{4},{\text{ }}\dfrac{\pi }{2}} \right] \\

d.{\text{ }}\left[ {0,{\text{ }}\dfrac{\pi }{4}} \right] \\

$

Answer

Verified

329.4k+ views

Hint: Check the graph of first derivative of the given function

Given equation is $f\left( x \right) = {\sin ^4}x + {\cos ^4}x.................\left( 1 \right)$

We know the function is increasing if its differentiation is greater than or equal to zero.

I.e.$f'\left( x \right) \geqslant 0$ so, differentiate equation 1 w.r.t.$x$

$

\Rightarrow f'\left( x \right) = 4{\sin ^3}x\dfrac{d}{{dx}}\sin x + 4{\cos ^3}x\dfrac{d}{{dx}}\cos x \\

\Rightarrow f'\left( x \right) = 4{\sin ^3}x\left( {\cos x} \right) + 4{\cos ^3}x\left( { - \sin x} \right) \\

\Rightarrow f'\left( x \right) = 4\sin x\cos x\left( {{{\sin }^2}x - {{\cos }^2}x} \right) \\

$

As we know$2\sin x\cos x = \sin 2x$, and${\cos ^2}x - {\sin ^2}x = \cos 2x$, so apply this

$ \Rightarrow f'\left( x \right) = - 2\sin 2x\cos 2x = - \sin 4x$

But for increasing function $f'\left( x \right) \geqslant 0$

$

\Rightarrow - \sin 4x \geqslant 0 \\

\Rightarrow \sin 4x \leqslant 0 \\

$

As we know $\sin x$is zero at $\left( {0,{\text{ }}\pi ,{\text{ }}2\pi } \right),$in the interval between $\left[ {0,2\pi } \right]$

So, in $\sin x$graph $\sin x$is less than or equal to zero in between $\left[ {\pi ,2\pi } \right]$

$

\Rightarrow 4x \in \left[ {\pi ,2\pi } \right] \\

\Rightarrow x \in \left[ {\dfrac{\pi }{4},\dfrac{\pi }{2}} \right] \\

$

Hence, option $c$ is correct.

Note: - In such a type of question the key concept we have to remember is that for increasing function the differentiation of function w.r.t. the variable is always greater than or equal to zero, then simplify this we will get the required answer and the required answer is the shaded region in the figure.

Given equation is $f\left( x \right) = {\sin ^4}x + {\cos ^4}x.................\left( 1 \right)$

We know the function is increasing if its differentiation is greater than or equal to zero.

I.e.$f'\left( x \right) \geqslant 0$ so, differentiate equation 1 w.r.t.$x$

$

\Rightarrow f'\left( x \right) = 4{\sin ^3}x\dfrac{d}{{dx}}\sin x + 4{\cos ^3}x\dfrac{d}{{dx}}\cos x \\

\Rightarrow f'\left( x \right) = 4{\sin ^3}x\left( {\cos x} \right) + 4{\cos ^3}x\left( { - \sin x} \right) \\

\Rightarrow f'\left( x \right) = 4\sin x\cos x\left( {{{\sin }^2}x - {{\cos }^2}x} \right) \\

$

As we know$2\sin x\cos x = \sin 2x$, and${\cos ^2}x - {\sin ^2}x = \cos 2x$, so apply this

$ \Rightarrow f'\left( x \right) = - 2\sin 2x\cos 2x = - \sin 4x$

But for increasing function $f'\left( x \right) \geqslant 0$

$

\Rightarrow - \sin 4x \geqslant 0 \\

\Rightarrow \sin 4x \leqslant 0 \\

$

As we know $\sin x$is zero at $\left( {0,{\text{ }}\pi ,{\text{ }}2\pi } \right),$in the interval between $\left[ {0,2\pi } \right]$

So, in $\sin x$graph $\sin x$is less than or equal to zero in between $\left[ {\pi ,2\pi } \right]$

$

\Rightarrow 4x \in \left[ {\pi ,2\pi } \right] \\

\Rightarrow x \in \left[ {\dfrac{\pi }{4},\dfrac{\pi }{2}} \right] \\

$

Hence, option $c$ is correct.

Note: - In such a type of question the key concept we have to remember is that for increasing function the differentiation of function w.r.t. the variable is always greater than or equal to zero, then simplify this we will get the required answer and the required answer is the shaded region in the figure.

Last updated date: 28th May 2023

•

Total views: 329.4k

•

Views today: 7.87k

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Alfred Wallace worked in A Galapagos Island B Australian class 12 biology CBSE

Imagine an atom made up of a proton and a hypothetical class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

How do you define least count for Vernier Calipers class 12 physics CBSE

Why is the cell called the structural and functional class 12 biology CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main