
Let $f\left( x \right) = {\sin ^4}x + {\cos ^4}x.$ Then f is an increasing function in the interval:
$
a.{\text{ }}\left[ {\dfrac{{5\pi }}{8},{\text{ }}\dfrac{{3\pi }}{4}} \right] \\
b.{\text{ }}\left[ {\dfrac{\pi }{2},{\text{ }}\dfrac{{5\pi }}{8}} \right] \\
c.{\text{ }}\left[ {\dfrac{\pi }{4},{\text{ }}\dfrac{\pi }{2}} \right] \\
d.{\text{ }}\left[ {0,{\text{ }}\dfrac{\pi }{4}} \right] \\
$
Answer
216.6k+ views
Hint: Check the graph of first derivative of the given function
Given equation is $f\left( x \right) = {\sin ^4}x + {\cos ^4}x.................\left( 1 \right)$
We know the function is increasing if its differentiation is greater than or equal to zero.
I.e.$f'\left( x \right) \geqslant 0$ so, differentiate equation 1 w.r.t.$x$
$
\Rightarrow f'\left( x \right) = 4{\sin ^3}x\dfrac{d}{{dx}}\sin x + 4{\cos ^3}x\dfrac{d}{{dx}}\cos x \\
\Rightarrow f'\left( x \right) = 4{\sin ^3}x\left( {\cos x} \right) + 4{\cos ^3}x\left( { - \sin x} \right) \\
\Rightarrow f'\left( x \right) = 4\sin x\cos x\left( {{{\sin }^2}x - {{\cos }^2}x} \right) \\
$
As we know$2\sin x\cos x = \sin 2x$, and${\cos ^2}x - {\sin ^2}x = \cos 2x$, so apply this
$ \Rightarrow f'\left( x \right) = - 2\sin 2x\cos 2x = - \sin 4x$
But for increasing function $f'\left( x \right) \geqslant 0$
$
\Rightarrow - \sin 4x \geqslant 0 \\
\Rightarrow \sin 4x \leqslant 0 \\
$
As we know $\sin x$is zero at $\left( {0,{\text{ }}\pi ,{\text{ }}2\pi } \right),$in the interval between $\left[ {0,2\pi } \right]$
So, in $\sin x$graph $\sin x$is less than or equal to zero in between $\left[ {\pi ,2\pi } \right]$
$
\Rightarrow 4x \in \left[ {\pi ,2\pi } \right] \\
\Rightarrow x \in \left[ {\dfrac{\pi }{4},\dfrac{\pi }{2}} \right] \\
$
Hence, option $c$ is correct.
Note: - In such a type of question the key concept we have to remember is that for increasing function the differentiation of function w.r.t. the variable is always greater than or equal to zero, then simplify this we will get the required answer and the required answer is the shaded region in the figure.
Given equation is $f\left( x \right) = {\sin ^4}x + {\cos ^4}x.................\left( 1 \right)$
We know the function is increasing if its differentiation is greater than or equal to zero.
I.e.$f'\left( x \right) \geqslant 0$ so, differentiate equation 1 w.r.t.$x$
$
\Rightarrow f'\left( x \right) = 4{\sin ^3}x\dfrac{d}{{dx}}\sin x + 4{\cos ^3}x\dfrac{d}{{dx}}\cos x \\
\Rightarrow f'\left( x \right) = 4{\sin ^3}x\left( {\cos x} \right) + 4{\cos ^3}x\left( { - \sin x} \right) \\
\Rightarrow f'\left( x \right) = 4\sin x\cos x\left( {{{\sin }^2}x - {{\cos }^2}x} \right) \\
$
As we know$2\sin x\cos x = \sin 2x$, and${\cos ^2}x - {\sin ^2}x = \cos 2x$, so apply this
$ \Rightarrow f'\left( x \right) = - 2\sin 2x\cos 2x = - \sin 4x$
But for increasing function $f'\left( x \right) \geqslant 0$
$
\Rightarrow - \sin 4x \geqslant 0 \\
\Rightarrow \sin 4x \leqslant 0 \\
$
As we know $\sin x$is zero at $\left( {0,{\text{ }}\pi ,{\text{ }}2\pi } \right),$in the interval between $\left[ {0,2\pi } \right]$
So, in $\sin x$graph $\sin x$is less than or equal to zero in between $\left[ {\pi ,2\pi } \right]$
$
\Rightarrow 4x \in \left[ {\pi ,2\pi } \right] \\
\Rightarrow x \in \left[ {\dfrac{\pi }{4},\dfrac{\pi }{2}} \right] \\
$
Hence, option $c$ is correct.
Note: - In such a type of question the key concept we have to remember is that for increasing function the differentiation of function w.r.t. the variable is always greater than or equal to zero, then simplify this we will get the required answer and the required answer is the shaded region in the figure.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

