
Let C be the circle with centre at (1, 1) and radius 1. If T is the circle centred at (0, k) passing through the origin and touching the circle C externally, then the radius of T is equal to
(1) \[\sqrt {\frac{3}{2}} \]
(2) \[\frac{{\sqrt 3 }}{2}\]
(3) \[\frac{1}{2}\]
(4) \[\frac{1}{4}\]
Answer
232.8k+ views
Hint: In this question, the distance between the center of the two circles whose coordinates are (1,1) and (0,k) respectively will be (1 + k). Apply the formula of the distance between the two points to find the distance between the points.
Formula Used: 1) \[\begin{array}{*{20}{c}}
R& = &{\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} }
\end{array}\]
Complete step by step Solution:
According to the given question, the figure is drawn. This figure will give some information about the radius of circle T.

According to the drawn figure, we will get to know that K is the radius of the circle T and the radius of the circle C is 1.
From the figure,
\[\begin{array}{*{20}{c}}
{ \Rightarrow CT}& = &{k + 1}
\end{array}\] …………… (A)
And we know that if there are two points which is at \[R\] distance to each other, then the distance between the coordinates will be written as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow R}& = &{\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} }
\end{array}\] ………….. (1)
And the coordinates of the points are given that is C(1, 1) and T(0, k)
Now,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x_1}}& = &1
\end{array}\] and \[\begin{array}{*{20}{c}}
{{y_1}}& = &1
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x_2}}& = &0
\end{array}\] and \[\begin{array}{*{20}{c}}
{{y_2}}& = &k
\end{array}\]
Put these values in equation (1). Therefore, we can write.
\[\begin{array}{*{20}{c}}
{ \Rightarrow R}& = &{\sqrt {{{(0 - 1)}^2} + {{(k - 1)}^2}} }
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow R}& = &{\sqrt {1 + {{(k - 1)}^2}} }
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow R}& = &{\sqrt {{k^2} - 2k + 2} }
\end{array}\]
Now from the figure \[\begin{array}{*{20}{c}}
R& = &{CT}
\end{array}\]. So we can write,
\[\begin{array}{*{20}{c}}
{ \Rightarrow CT}& = &{\sqrt {{k^2} - 2k + 2} }
\end{array}\]………………………… (B)
On comparing the equation (A) and equation (B), we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow k + 1}& = &{\sqrt {{k^2} - 2k + 2} }
\end{array}\]
Square both sides in the above equation, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{(k + 1)}^2}}& = &{(\sqrt {{k^2} - 2k + 2} }
\end{array}{)^2}\]
Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {k^2} + 1 + 2k}& = &{{k^2} - 2k + 2}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow 4k}& = &1
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow k}& = &{\frac{1}{4}}
\end{array}\]
Now the final answer is \[\begin{array}{*{20}{c}}
k& = &{\frac{1}{4}}
\end{array}\]. Therefore,
Hence, the correct option is 4.
Note: The distance between the center of the two circles will be computed with the help of the distance formula of the two coordinates.
Formula Used: 1) \[\begin{array}{*{20}{c}}
R& = &{\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} }
\end{array}\]
Complete step by step Solution:
According to the given question, the figure is drawn. This figure will give some information about the radius of circle T.

According to the drawn figure, we will get to know that K is the radius of the circle T and the radius of the circle C is 1.
From the figure,
\[\begin{array}{*{20}{c}}
{ \Rightarrow CT}& = &{k + 1}
\end{array}\] …………… (A)
And we know that if there are two points which is at \[R\] distance to each other, then the distance between the coordinates will be written as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow R}& = &{\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} }
\end{array}\] ………….. (1)
And the coordinates of the points are given that is C(1, 1) and T(0, k)
Now,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x_1}}& = &1
\end{array}\] and \[\begin{array}{*{20}{c}}
{{y_1}}& = &1
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {x_2}}& = &0
\end{array}\] and \[\begin{array}{*{20}{c}}
{{y_2}}& = &k
\end{array}\]
Put these values in equation (1). Therefore, we can write.
\[\begin{array}{*{20}{c}}
{ \Rightarrow R}& = &{\sqrt {{{(0 - 1)}^2} + {{(k - 1)}^2}} }
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow R}& = &{\sqrt {1 + {{(k - 1)}^2}} }
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow R}& = &{\sqrt {{k^2} - 2k + 2} }
\end{array}\]
Now from the figure \[\begin{array}{*{20}{c}}
R& = &{CT}
\end{array}\]. So we can write,
\[\begin{array}{*{20}{c}}
{ \Rightarrow CT}& = &{\sqrt {{k^2} - 2k + 2} }
\end{array}\]………………………… (B)
On comparing the equation (A) and equation (B), we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow k + 1}& = &{\sqrt {{k^2} - 2k + 2} }
\end{array}\]
Square both sides in the above equation, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{(k + 1)}^2}}& = &{(\sqrt {{k^2} - 2k + 2} }
\end{array}{)^2}\]
Therefore,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {k^2} + 1 + 2k}& = &{{k^2} - 2k + 2}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow 4k}& = &1
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow k}& = &{\frac{1}{4}}
\end{array}\]
Now the final answer is \[\begin{array}{*{20}{c}}
k& = &{\frac{1}{4}}
\end{array}\]. Therefore,
Hence, the correct option is 4.
Note: The distance between the center of the two circles will be computed with the help of the distance formula of the two coordinates.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

