
Let \[\alpha \] be the angle between the lines whose direction cosines satisfy the equations \[l + m - n = 0\] and \[{l^2} + {m^2} - {n^2} = 0\]. Then what is the value of \[\sin^{4}\alpha + \cos^{4}\alpha \] ?
A. \[\dfrac{3}{4}\]
B. \[\dfrac{1}{2}\]
C. \[\dfrac{5}{8}\]
D. \[\dfrac{3}{8}\]
Answer
232.8k+ views
Hint: First, Simplify the given equations and find the values of \[l\], and \[m\]. Substitute the values in the equation and find the values of other variables. Since the direction cosines satisfy the equations, so the values of the variables are the direction ratios. After that, use the formula of the angle between the lines and find the value of \[\cos\alpha \]. Then use the trigonometric identity \[\sin^{2}A + \cos^{2}A = 1\] and calculate the value of \[\sin^{2}\alpha \]. In the end, add the fourth power of both values to get the required answer
Formula Used: Angle between the lines with direction ratios \[\left( {{a_1},{b_1},{c_1}} \right)\] and \[\left( {{a_2},{b_2},{c_2}} \right)\] is: \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution:
Given:
The direction cosines of two lines satisfy the equations \[l + m - n = 0\] and \[{l^2} + {m^2} - {n^2} = 0\].
The angle between the lines is \[\alpha \].
Let’s solve the given equations.
\[l + m - n = 0\] \[.....\left( 1 \right)\]
\[ \Rightarrow \]\[l + m = n\]
Take square on the both sides.
\[{l^2} + {m^2} + 2lm = {n^2}\]
\[ \Rightarrow \]\[{l^2} + {m^2} = {n^2} - 2lm\]
Substitute the value of \[{l^2} + {m^2}\] in the another given equation.
\[{n^2} - 2lm - {n^2} = 0\]
\[ \Rightarrow \]\[ - 2lm = 0\]
\[ \Rightarrow \]\[lm = 0\]
\[ \Rightarrow \]\[l = 0\] or \[m = 0\]
Now substitute the values \[l = 0\] and \[m = 0\] in the equation \[\left( 1 \right)\].
Case 1: \[l = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[m = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[0 + {m^2} + {m^2} = 1\]
\[ \Rightarrow \]\[2{m^2} = 1\]
\[ \Rightarrow \]\[{m^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[m = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( {0, - \dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Case 2: \[m = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[l = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[{l^2} + 0 + {l^2} = 1\]
\[ \Rightarrow \]\[2{l^2} = 1\]
\[ \Rightarrow \]\[{l^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[l = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( { - \dfrac{1}{{\sqrt 2 }},0, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Let’s consider \[\left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] and \[\left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] are the direction cosines of the two lines.
Apply the formula of the angle between the lines.
\[\cos\alpha = \left| {\dfrac{{\left( 0 \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( 0 \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}{{\sqrt {{{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt {\dfrac{1}{2} + \dfrac{1}{2}} \sqrt {\dfrac{1}{2} + \dfrac{1}{2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt 1 \sqrt 1 }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \dfrac{1}{2}\]
Take the fourth power on both sides.
\[\cos^{4}\alpha = \dfrac{1}{{16}}\] \[.....\left( 2 \right)\]
Now apply the formula \[\sin^{2}A + \cos^{2}A = 1\].
\[\sin^{2}\alpha = 1 - \cos^{2}\alpha \]
Substitute \[\cos\alpha = \dfrac{1}{2}\] in the above equation.
\[\sin^{2}\alpha = 1 - {\left( {\dfrac{1}{2}} \right)^2}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = 1 - \dfrac{1}{4}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = \dfrac{3}{4}\]
Take square on both sides.
\[\sin^{4}\alpha = \dfrac{9}{{16}}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 2 \right)\] and \[\left( 3 \right)\].
\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{9}{{16}} + \dfrac{1}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{{10}}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{5}{8}\]
Hence the correct option is C.
Note: Students often get confused about the formula of the angle between the lines.
If the slopes of the lines are given, then we can use the formula \[\tan\theta = \left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\] .
If the direction cosines are given, then we can use the formula \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\].
Formula Used: Angle between the lines with direction ratios \[\left( {{a_1},{b_1},{c_1}} \right)\] and \[\left( {{a_2},{b_2},{c_2}} \right)\] is: \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\]
\[\sin^{2}A + \cos^{2}A = 1\]
Complete step by step solution:
Given:
The direction cosines of two lines satisfy the equations \[l + m - n = 0\] and \[{l^2} + {m^2} - {n^2} = 0\].
The angle between the lines is \[\alpha \].
Let’s solve the given equations.
\[l + m - n = 0\] \[.....\left( 1 \right)\]
\[ \Rightarrow \]\[l + m = n\]
Take square on the both sides.
\[{l^2} + {m^2} + 2lm = {n^2}\]
\[ \Rightarrow \]\[{l^2} + {m^2} = {n^2} - 2lm\]
Substitute the value of \[{l^2} + {m^2}\] in the another given equation.
\[{n^2} - 2lm - {n^2} = 0\]
\[ \Rightarrow \]\[ - 2lm = 0\]
\[ \Rightarrow \]\[lm = 0\]
\[ \Rightarrow \]\[l = 0\] or \[m = 0\]
Now substitute the values \[l = 0\] and \[m = 0\] in the equation \[\left( 1 \right)\].
Case 1: \[l = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[m = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[0 + {m^2} + {m^2} = 1\]
\[ \Rightarrow \]\[2{m^2} = 1\]
\[ \Rightarrow \]\[{m^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[m = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( {0, - \dfrac{1}{{\sqrt 2 }}, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Case 2: \[m = 0\]
Then equation \[\left( 1 \right)\] becomes,
\[l = n\]
We know that if \[l, m, n\] are direction cosines, then \[{l^2} + {m^2} + {n^2} = 1\].
Substitute the values in the above equation. We get
\[{l^2} + 0 + {l^2} = 1\]
\[ \Rightarrow \]\[2{l^2} = 1\]
\[ \Rightarrow \]\[{l^2} = \dfrac{1}{2}\]
\[ \Rightarrow \]\[l = \pm \dfrac{1}{{\sqrt 2 }}\]
Thus, \[n = \pm \dfrac{1}{{\sqrt 2 }}\]
Therefore,
\[\left( {l,m,n} \right) = \left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] or \[\left( {l,m,n} \right) = \left( { - \dfrac{1}{{\sqrt 2 }},0, - \dfrac{1}{{\sqrt 2 }}} \right)\]
Let’s consider \[\left( {0,\dfrac{1}{{\sqrt 2 }},\dfrac{1}{{\sqrt 2 }}} \right)\] and \[\left( {\dfrac{1}{{\sqrt 2 }},0,\dfrac{1}{{\sqrt 2 }}} \right)\] are the direction cosines of the two lines.
Apply the formula of the angle between the lines.
\[\cos\alpha = \left| {\dfrac{{\left( 0 \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( 0 \right) + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right)}}{{\sqrt {{{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \sqrt {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( 0 \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt {\dfrac{1}{2} + \dfrac{1}{2}} \sqrt {\dfrac{1}{2} + \dfrac{1}{2}} }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \left| {\dfrac{{\dfrac{1}{2}}}{{\sqrt 1 \sqrt 1 }}} \right|\]
\[ \Rightarrow \]\[\cos\alpha = \dfrac{1}{2}\]
Take the fourth power on both sides.
\[\cos^{4}\alpha = \dfrac{1}{{16}}\] \[.....\left( 2 \right)\]
Now apply the formula \[\sin^{2}A + \cos^{2}A = 1\].
\[\sin^{2}\alpha = 1 - \cos^{2}\alpha \]
Substitute \[\cos\alpha = \dfrac{1}{2}\] in the above equation.
\[\sin^{2}\alpha = 1 - {\left( {\dfrac{1}{2}} \right)^2}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = 1 - \dfrac{1}{4}\]
\[ \Rightarrow \]\[\sin^{2}\alpha = \dfrac{3}{4}\]
Take square on both sides.
\[\sin^{4}\alpha = \dfrac{9}{{16}}\] \[.....\left( 3 \right)\]
Now add the equations \[\left( 2 \right)\] and \[\left( 3 \right)\].
\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{9}{{16}} + \dfrac{1}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{{10}}{{16}}\]
\[ \Rightarrow \]\[\sin^{4}\alpha + \cos^{4}\alpha = \dfrac{5}{8}\]
Hence the correct option is C.
Note: Students often get confused about the formula of the angle between the lines.
If the slopes of the lines are given, then we can use the formula \[\tan\theta = \left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\] .
If the direction cosines are given, then we can use the formula \[\cos\theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

