
\[\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...100\] terms.
(a) \[\frac{{25}}{{160}}\]
(b) \[\frac{1}{6}\]
(c) \[\frac{{25}}{{151}}\]
(d) \[\frac{{25}}{{152}}\]
Answer
232.8k+ views
Hint: Use all the basic fundamentals of the sequence and series. According to the given question, series 2, 5, 8 ….. and 5,8,11…. are in arithmetic progression(A.P) because differences between the two adjacent terms are constant.
Complete step by step Solution:
As per the given question, the series is given up to the 100 terms in the form of sum. So, Let us assume that the series is given, is equal to the S. So we can write that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow S}& = &{\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...}
\end{array}\left( {\frac{1}{{(3n - 1)(3n + 2)}}} \right)\] up to 100 terms.
As we can see that the series 2, 5, 8 and series 5, 8, 11 are in arithmetic progression (A.P). So we will find the \[{n^{th}}\]terms of both the series. So we can write,
In the series \[2,{\text{ }}5,{\text{ }}8{\text{ }} \ldots \ldots \]
\[ \Rightarrow \begin{array}{*{20}{c}}
a& = &2
\end{array}\]and \[\begin{array}{*{20}{c}}
d& = &{{T_2} - {T_1}}
\end{array}\]. So, \[\begin{array}{*{20}{c}}
d& = &{5 - 2}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
d& = &3
\end{array}\]
Now we know that the \[{n^{th}}\] term of the series is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{a + (n - 1)d}
\end{array}\]
Now,
\[ \Rightarrow \begin{array}{*{20}{c}}
{{T_n}}& = &{2 + 3(n - 1)}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{3n - 1}
\end{array}\]
And for the series \[5,{\text{ }}8,{\text{ }}11......\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow a}& = &5
\end{array}\] and \[\begin{array}{*{20}{c}}
d& = &3
\end{array}\]
Now \[{n^{th}}\]term of this series is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{5 + (n - 1)3}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{3n + 2}
\end{array}\]
Therefore, we can write given series as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...}
\end{array}\left( {\frac{1}{{(3n - 1)(3n + 2)}}} \right)\]
Now, multiply and divide the above series by 3. So we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{3}{3}\left[ {\frac{1}{{2 \cdot 5}} + \frac{1}{{5 \cdot 8}} + \frac{1}{{8 \cdot 11}} + ...\frac{1}{{(3n - 1)(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{{5 - 2}}{{2 \cdot 5}} + \frac{{8 - 5}}{{5 \cdot 8}} + \frac{{11 - 8}}{{8 \cdot 11}} + ...\frac{{(3n + 2) - (3n - 1)}}{{(3n - 1)(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{1}{2} - \frac{1}{5} + \frac{1}{5} - \frac{1}{8} + \frac{1}{8} - \frac{1}{{11}} + ...\frac{1}{{(3n - 1)}} - \frac{1}{{(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{1}{2} - \frac{1}{{(3n + 2)}}} \right]}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
{{S_n}}& = &{\frac{n}{{2(3n + 2)}}}
\end{array}\]
Now we have to find the sum of the given series up to 100 terms. So the value of n will be 100.Therefore, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{{100}}{{2(3 \times 100 + 2)}}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{{25}}{{151}}}
\end{array}\]
Now, the final answer is \[\frac{{25}}{{151}}\].
Hence, the correct option is C.
Note: Numerators of the given series are in arithmetic progression (A.P). First of all, find the \[{n^{th}}\]term of the series which are in arithmetic progression (A.P). So, Find the sum of the series up to \[{n^{th}}\]term and after that put the value of \[\begin{array}{*{20}{c}}
n& = &{100}
\end{array}\].
Complete step by step Solution:
As per the given question, the series is given up to the 100 terms in the form of sum. So, Let us assume that the series is given, is equal to the S. So we can write that,
\[\begin{array}{*{20}{c}}
{ \Rightarrow S}& = &{\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...}
\end{array}\left( {\frac{1}{{(3n - 1)(3n + 2)}}} \right)\] up to 100 terms.
As we can see that the series 2, 5, 8 and series 5, 8, 11 are in arithmetic progression (A.P). So we will find the \[{n^{th}}\]terms of both the series. So we can write,
In the series \[2,{\text{ }}5,{\text{ }}8{\text{ }} \ldots \ldots \]
\[ \Rightarrow \begin{array}{*{20}{c}}
a& = &2
\end{array}\]and \[\begin{array}{*{20}{c}}
d& = &{{T_2} - {T_1}}
\end{array}\]. So, \[\begin{array}{*{20}{c}}
d& = &{5 - 2}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
d& = &3
\end{array}\]
Now we know that the \[{n^{th}}\] term of the series is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{a + (n - 1)d}
\end{array}\]
Now,
\[ \Rightarrow \begin{array}{*{20}{c}}
{{T_n}}& = &{2 + 3(n - 1)}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{3n - 1}
\end{array}\]
And for the series \[5,{\text{ }}8,{\text{ }}11......\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow a}& = &5
\end{array}\] and \[\begin{array}{*{20}{c}}
d& = &3
\end{array}\]
Now \[{n^{th}}\]term of this series is,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{5 + (n - 1)3}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {T_n}}& = &{3n + 2}
\end{array}\]
Therefore, we can write given series as,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\left( {\frac{1}{{2 \cdot 5}}} \right) + \left( {\frac{1}{{5 \cdot 8}}} \right) + \left( {\frac{1}{{8 \cdot 11}}} \right) + ...}
\end{array}\left( {\frac{1}{{(3n - 1)(3n + 2)}}} \right)\]
Now, multiply and divide the above series by 3. So we will get,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{3}{3}\left[ {\frac{1}{{2 \cdot 5}} + \frac{1}{{5 \cdot 8}} + \frac{1}{{8 \cdot 11}} + ...\frac{1}{{(3n - 1)(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{{5 - 2}}{{2 \cdot 5}} + \frac{{8 - 5}}{{5 \cdot 8}} + \frac{{11 - 8}}{{8 \cdot 11}} + ...\frac{{(3n + 2) - (3n - 1)}}{{(3n - 1)(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{1}{2} - \frac{1}{5} + \frac{1}{5} - \frac{1}{8} + \frac{1}{8} - \frac{1}{{11}} + ...\frac{1}{{(3n - 1)}} - \frac{1}{{(3n + 2)}}} \right]}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{1}{3}\left[ {\frac{1}{2} - \frac{1}{{(3n + 2)}}} \right]}
\end{array}\]
\[ \Rightarrow \begin{array}{*{20}{c}}
{{S_n}}& = &{\frac{n}{{2(3n + 2)}}}
\end{array}\]
Now we have to find the sum of the given series up to 100 terms. So the value of n will be 100.Therefore, we will get.
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{{100}}{{2(3 \times 100 + 2)}}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow {S_n}}& = &{\frac{{25}}{{151}}}
\end{array}\]
Now, the final answer is \[\frac{{25}}{{151}}\].
Hence, the correct option is C.
Note: Numerators of the given series are in arithmetic progression (A.P). First of all, find the \[{n^{th}}\]term of the series which are in arithmetic progression (A.P). So, Find the sum of the series up to \[{n^{th}}\]term and after that put the value of \[\begin{array}{*{20}{c}}
n& = &{100}
\end{array}\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

