
Is A cross B is equal to B cross A?
Answer
217.5k+ views
Hint: Suppose that A and B are two vectors, where \[\overrightarrow A = a\widehat i + b\widehat j + c\widehat k{\rm{ and }}\overrightarrow B = p\widehat i + q\widehat j + r\widehat k\], then find the cross product of A and B, then find the cross product of B and A and observe that whether \[A \times B = B \times A\] or \[A \times B \ne B \times A\] .
Formula Used:The formula of cross product is \[\overrightarrow A \times \overrightarrow B = \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\a&b&c\\p&q&r\end{array}} \right|\] ,
where \[\overrightarrow A = a\widehat i + b\widehat j + c\widehat k{\rm{ and }}\overrightarrow B = p\widehat i + q\widehat j + r\widehat k\].
Complete step by step solution:We have,
\[\overrightarrow A \times \overrightarrow B = \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\a&b&c\\p&q&r\end{array}} \right|\]
\[ = \widehat i\left( {br - cq} \right) - \widehat j\left( {ar - cp} \right) + \widehat k\left( {aq - pb} \right)\]
And,
\[\overrightarrow B \times \overrightarrow A = \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\p&q&r\\a&b&c\end{array}} \right|\]
\[ = \widehat i\left( {cq - br} \right) - \widehat j\left( {cp - ar} \right) + \widehat k\left( {pb - aq} \right)\]
\[ = - \widehat i\left( {br - cq} \right) + \widehat j\left( {ar - cp} \right) - \widehat k\left( {aq - pb} \right)\]
\[ = - \left[ {\widehat i\left( {br - cq} \right) - \widehat j\left( {ar - cp} \right) + \widehat k\left( {aq - pb} \right)} \right]\]
\[ = - \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\a&b&c\\p&q&r\end{array}} \right|\]
\[ = - \left( {\overrightarrow A \times \overrightarrow B } \right)\]
Therefore, A cross B is not equal to B cross A, as \[\overrightarrow B \times \overrightarrow A = - \left( {\overrightarrow A \times \overrightarrow B } \right)\].
Additional Information:Cross product of two vectors represents a vector that is perpendicular to the plane where the vectors lie.
Note: Sometime students get confused when they calculate the value of the determinant, so calculate the value of the determinant with expanding the first row as \[\widehat i\left( {br - cq} \right) - \widehat j\left( {ar - cp} \right) + \widehat k\left( {aq - pb} \right)\] .
Formula Used:The formula of cross product is \[\overrightarrow A \times \overrightarrow B = \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\a&b&c\\p&q&r\end{array}} \right|\] ,
where \[\overrightarrow A = a\widehat i + b\widehat j + c\widehat k{\rm{ and }}\overrightarrow B = p\widehat i + q\widehat j + r\widehat k\].
Complete step by step solution:We have,
\[\overrightarrow A \times \overrightarrow B = \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\a&b&c\\p&q&r\end{array}} \right|\]
\[ = \widehat i\left( {br - cq} \right) - \widehat j\left( {ar - cp} \right) + \widehat k\left( {aq - pb} \right)\]
And,
\[\overrightarrow B \times \overrightarrow A = \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\p&q&r\\a&b&c\end{array}} \right|\]
\[ = \widehat i\left( {cq - br} \right) - \widehat j\left( {cp - ar} \right) + \widehat k\left( {pb - aq} \right)\]
\[ = - \widehat i\left( {br - cq} \right) + \widehat j\left( {ar - cp} \right) - \widehat k\left( {aq - pb} \right)\]
\[ = - \left[ {\widehat i\left( {br - cq} \right) - \widehat j\left( {ar - cp} \right) + \widehat k\left( {aq - pb} \right)} \right]\]
\[ = - \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\a&b&c\\p&q&r\end{array}} \right|\]
\[ = - \left( {\overrightarrow A \times \overrightarrow B } \right)\]
Therefore, A cross B is not equal to B cross A, as \[\overrightarrow B \times \overrightarrow A = - \left( {\overrightarrow A \times \overrightarrow B } \right)\].
Additional Information:Cross product of two vectors represents a vector that is perpendicular to the plane where the vectors lie.
Note: Sometime students get confused when they calculate the value of the determinant, so calculate the value of the determinant with expanding the first row as \[\widehat i\left( {br - cq} \right) - \widehat j\left( {ar - cp} \right) + \widehat k\left( {aq - pb} \right)\] .
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

