
Is A cross B is equal to B cross A?
Answer
232.8k+ views
Hint: Suppose that A and B are two vectors, where \[\overrightarrow A = a\widehat i + b\widehat j + c\widehat k{\rm{ and }}\overrightarrow B = p\widehat i + q\widehat j + r\widehat k\], then find the cross product of A and B, then find the cross product of B and A and observe that whether \[A \times B = B \times A\] or \[A \times B \ne B \times A\] .
Formula Used:The formula of cross product is \[\overrightarrow A \times \overrightarrow B = \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\a&b&c\\p&q&r\end{array}} \right|\] ,
where \[\overrightarrow A = a\widehat i + b\widehat j + c\widehat k{\rm{ and }}\overrightarrow B = p\widehat i + q\widehat j + r\widehat k\].
Complete step by step solution:We have,
\[\overrightarrow A \times \overrightarrow B = \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\a&b&c\\p&q&r\end{array}} \right|\]
\[ = \widehat i\left( {br - cq} \right) - \widehat j\left( {ar - cp} \right) + \widehat k\left( {aq - pb} \right)\]
And,
\[\overrightarrow B \times \overrightarrow A = \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\p&q&r\\a&b&c\end{array}} \right|\]
\[ = \widehat i\left( {cq - br} \right) - \widehat j\left( {cp - ar} \right) + \widehat k\left( {pb - aq} \right)\]
\[ = - \widehat i\left( {br - cq} \right) + \widehat j\left( {ar - cp} \right) - \widehat k\left( {aq - pb} \right)\]
\[ = - \left[ {\widehat i\left( {br - cq} \right) - \widehat j\left( {ar - cp} \right) + \widehat k\left( {aq - pb} \right)} \right]\]
\[ = - \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\a&b&c\\p&q&r\end{array}} \right|\]
\[ = - \left( {\overrightarrow A \times \overrightarrow B } \right)\]
Therefore, A cross B is not equal to B cross A, as \[\overrightarrow B \times \overrightarrow A = - \left( {\overrightarrow A \times \overrightarrow B } \right)\].
Additional Information:Cross product of two vectors represents a vector that is perpendicular to the plane where the vectors lie.
Note: Sometime students get confused when they calculate the value of the determinant, so calculate the value of the determinant with expanding the first row as \[\widehat i\left( {br - cq} \right) - \widehat j\left( {ar - cp} \right) + \widehat k\left( {aq - pb} \right)\] .
Formula Used:The formula of cross product is \[\overrightarrow A \times \overrightarrow B = \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\a&b&c\\p&q&r\end{array}} \right|\] ,
where \[\overrightarrow A = a\widehat i + b\widehat j + c\widehat k{\rm{ and }}\overrightarrow B = p\widehat i + q\widehat j + r\widehat k\].
Complete step by step solution:We have,
\[\overrightarrow A \times \overrightarrow B = \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\a&b&c\\p&q&r\end{array}} \right|\]
\[ = \widehat i\left( {br - cq} \right) - \widehat j\left( {ar - cp} \right) + \widehat k\left( {aq - pb} \right)\]
And,
\[\overrightarrow B \times \overrightarrow A = \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\p&q&r\\a&b&c\end{array}} \right|\]
\[ = \widehat i\left( {cq - br} \right) - \widehat j\left( {cp - ar} \right) + \widehat k\left( {pb - aq} \right)\]
\[ = - \widehat i\left( {br - cq} \right) + \widehat j\left( {ar - cp} \right) - \widehat k\left( {aq - pb} \right)\]
\[ = - \left[ {\widehat i\left( {br - cq} \right) - \widehat j\left( {ar - cp} \right) + \widehat k\left( {aq - pb} \right)} \right]\]
\[ = - \left| {\begin{array}{*{20}{c}}{\widehat i}&{\widehat j}&{\widehat k}\\a&b&c\\p&q&r\end{array}} \right|\]
\[ = - \left( {\overrightarrow A \times \overrightarrow B } \right)\]
Therefore, A cross B is not equal to B cross A, as \[\overrightarrow B \times \overrightarrow A = - \left( {\overrightarrow A \times \overrightarrow B } \right)\].
Additional Information:Cross product of two vectors represents a vector that is perpendicular to the plane where the vectors lie.
Note: Sometime students get confused when they calculate the value of the determinant, so calculate the value of the determinant with expanding the first row as \[\widehat i\left( {br - cq} \right) - \widehat j\left( {ar - cp} \right) + \widehat k\left( {aq - pb} \right)\] .
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

