
Inverse of the matrix $\begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2& 0 & 1 \\ \end{bmatrix}$ is
A. $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 3 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}$
B. $\begin{bmatrix} 1 & -3 & 5 \\ 7 & 4 & 6 \\ 4 & 2 & 7 \\ \end{bmatrix}$
C. $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}$
D. $\begin{bmatrix} 1 & -3 & 5 \\ 7 & 4 & 6 \\ 4 & 2 & -7 \\ \end{bmatrix}$
Answer
232.8k+ views
Hint: You can use two techniques to determine a matrix's inverse. By utilising an adjoint of a matrix and simple operations, it is possible to calculate the inverse of a matrix. Row or column transformations can carry out the basic functions on a matrix. Additionally, the adjoint and determinant of the matrix can be used to apply the inverse of the matrix formula to calculate the inverse of a matrix.
Formula Used:
Inverse Matrix Formula$=A^{-1}=\frac{1}{|A|}.AdjA$
Complete step by step Solution:
Let the given matrix as $A=\begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \\ \end{bmatrix}$
Then, the determinant of A is given by;
$|A|=\begin{vmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \\ \end{vmatrix}\\
|A|=1$
we can now determine the adjoint of the matrix A by calculating the cofactors for each element and then transposing the cofactor matrix,
The matrix of cofactors of $A = \begin{bmatrix} {{c}_{11}} & {{c}_{12}} & {{c}_{13}} \\ {{c}_{21}} & {{c}_{22}} & {{c}_{23}} \\ {{c}_{31}} & {{c}_{32}} & {{c}_{33}} \\ \end{bmatrix}=\begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \\ \end{bmatrix}$
Therefore, the transpose of the cofactor matrix is an Adjoint matrix.
$Adj(A)= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}$
The inverse of a matrix A is:
${{A}^{-1}}=\frac{1}{|A|}\,.\,adjA\\
{{A}^{-1}}=1.\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}\\
{{A}^{-1}}= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}$
So, option C is correct.
Note: The inverse of a matrix can only exist if the matrix's determinant has a non-zero value |A| i.e., $|A|\neq 0$. The provided matrix must be square. In making the cofactor matrix reverse the sign of the alternating terms to create the adjoint or adjugate matrix.
Formula Used:
Inverse Matrix Formula$=A^{-1}=\frac{1}{|A|}.AdjA$
Complete step by step Solution:
Let the given matrix as $A=\begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \\ \end{bmatrix}$
Then, the determinant of A is given by;
$|A|=\begin{vmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \\ \end{vmatrix}\\
|A|=1$
we can now determine the adjoint of the matrix A by calculating the cofactors for each element and then transposing the cofactor matrix,
The matrix of cofactors of $A = \begin{bmatrix} {{c}_{11}} & {{c}_{12}} & {{c}_{13}} \\ {{c}_{21}} & {{c}_{22}} & {{c}_{23}} \\ {{c}_{31}} & {{c}_{32}} & {{c}_{33}} \\ \end{bmatrix}=\begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -4 \\ 3 & 7 & -5 \\ \end{bmatrix}$
Therefore, the transpose of the cofactor matrix is an Adjoint matrix.
$Adj(A)= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}$
The inverse of a matrix A is:
${{A}^{-1}}=\frac{1}{|A|}\,.\,adjA\\
{{A}^{-1}}=1.\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}\\
{{A}^{-1}}= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \\ \end{bmatrix}$
So, option C is correct.
Note: The inverse of a matrix can only exist if the matrix's determinant has a non-zero value |A| i.e., $|A|\neq 0$. The provided matrix must be square. In making the cofactor matrix reverse the sign of the alternating terms to create the adjoint or adjugate matrix.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Other Pages
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Collisions: Types and Examples for Students

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

