   Question Answers

# Integral of $\sqrt {1 + 2\cot x(\cot x + \cos ecx}$ w.r.t x is?  Hint: Integration is the one of the two main operations of calculus; its inverse operation differentiation is the other.
Integration of trigonometric functions generally if the function is $\operatorname{Sin} (x)\,or\,\cos (x)$ is reverse of their respective derivatives.
We have $\int {a\cos xxdx = \dfrac{a}{n}\operatorname{Sin} nx + C}$
In all formulas the constant ‘a’ is supposed to be non-new, while c denotes the constant of integration.

Complete step-by-step solution
Given $\sqrt {1 + 2\cot x(\cot x + \cos ecx} .....(1)$
To simplify the question let us convert all trigonometric ratio in $'COS'$ or $'\operatorname{Sin} '$
We know $\cot x = \dfrac{cos}{{\sin x}}\ and\,\cos ex = \dfrac{1}{{\sin x}}$
Using these value in (2) we have
$\Rightarrow \sqrt {1 + 2{{\cot }^2}x + 2\cot x\operatorname{Cos} ex} ..................(2)$
$\Rightarrow \sqrt {1 + 2{{(\dfrac{{\cos x}}{{\sin x}})}^2} + 2(\dfrac{{\cos x}}{{\sin x}})(\dfrac{1}{{\sin x}})}$
$\Rightarrow \sqrt {1 + 2{{(\dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}})}^2} + 2(\dfrac{{\cos x}}{{{{\sin }^2}x}})}$
Taking the LCM
$\Rightarrow \sqrt {\dfrac{{{{\sin }^2}x + 2{{\cos }^2}x + 2\cos x}}{{{{\sin }^2}x}}} = \sqrt {\dfrac{{{{\sin }^2}x + 2{{\cos }^2}x + 2\cos x}}{{\sin x}}} ..................(3)$
We known ${\cos ^2}x + {\sin ^2}x = 1 \Rightarrow {\operatorname{Sin} ^2}x = 1 - c{a^2}x$
Using the value in (3) we get

$\Rightarrow \sqrt {\dfrac{{(1 - {{\cos }^2}x) + 2{{\cos }^2}x + 2\cos x}}{{\sin x}})}$
$\Rightarrow \sqrt {\dfrac{{1 - {{\cos }^2}x + 2{{\cos }^2}x + 2\cos x}}{{\sin x}})}$
$\Rightarrow \sqrt {\dfrac{{{{\cos }^2}x + 2\cos x + 1}}{{\sin x}}}$
$\Rightarrow \sqrt {\dfrac{{\cos x + 1}}{{\sin x}}}$ $\left[ {\because {{\cos }^2}x + 2\cos x + 1 = {{(1 + \cos x)}^2}} \right]$
$\Rightarrow \dfrac{{\cos x + 1}}{{\sin x}}$

Writing the $\sin x$, and the $\cos x$ in submultiples angle we have,
$\Rightarrow \dfrac{{(2{{\cos }^2}\dfrac{x}{2} - 1 + 1)}}{{\operatorname{Sin} x}}\left[ {\because \cos x = 2\cos^ 2\dfrac{x}{2} - 1} \right]$
$\Rightarrow \dfrac{{(2{{\cos }^2}\dfrac{x}{2} - 1 + 1)}}{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}\left[ {\because \sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \right]$
$\Rightarrow \dfrac{{2{{\cos }^2}\dfrac{x}{2}}}{{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}} \Rightarrow \dfrac{{2\cos \dfrac{x}{2}}}{{2\sin \dfrac{x}{2}}}$ $= \cot \dfrac{x}{2}$

Now, $\cot xdx = \log \left| {\sin x} \right| + c$
So, $\int {\cot \dfrac{x}{2}dx = \dfrac{{\log \left| {\sin \dfrac{x}{2}} \right|}}{{\dfrac{d}{{dx}}(\dfrac{x}{2})}}}$
$= \dfrac{{\log \left| {\sin \dfrac{x}{2}} \right|}}{{(\dfrac{1}{2})}} + c$ $\left[ {\because \dfrac{d}{{dx}}(\dfrac{x}{n}) = \dfrac{1}{n}} \right]$
$= 2\log \left| {\sin \dfrac{x}{2} + c} \right|$ where c is content of integration

Note
In integration of trigonometric function if x is replaced by any other function then derivative of that function is divided by the integration only
For Ex. $\int {\cos nxdx = \dfrac{1}{n}\sin nx + c}$
$\int {\cos nxdx = \dfrac{{\sin nxx}}{{\dfrac{d}{{dx}}(nx)}} + c}$
$\int {\cos nxdx = \dfrac{1}{n}\sin nx + c}$

These functions are used to relate the angles of a triangle with the sides of that triangle. Trigonometric functions are important when studying triangles and modelling periodic phenomena such as waves, sound, and light. To define these functions for the angle theta, begin with a right triangle. Each function relates the angle to two sides of a right triangle

View Notes
Electromagnetic Spectrum X-rays  Indefinite Integral Formula  Definite Integral Formulas  Value of Cos 120  Cos 360  Vector Calculus  CBSE Class 12 Maths Chapter-1 Relations and Functions Formula  CBSE Class 12 Maths Chapter-8 Application of Integrals Formula  CBSE Class 12 Maths Formulas  CBSE Class 12 Maths Chapter-6 Application of Derivatives Formula  Important Questions for CBSE Class 12 Maths Chapter 1 - Relations and Functions  NCERT Books Free Download for Class 12 Maths Chapter-1 Relations and Functions  Important Questions for CBSE Class 12 Maths Chapter 8 - Application of Integrals  Important Questions for CBSE Class 12 Maths Chapter 6 - Application of Derivatives  Important Questions for CBSE Class 12 Biology Chapter 1 - Reproduction in Organism  Important Questions for CBSE Class 12 Physics Chapter 1 - Electric Charges and Fields  Important Questions for CBSE Class 12 Chemistry Chapter 1 - The Solid State  Important Questions for CBSE Class 12 Hindi Antral Chapter 1 - Surdas Ki Jhopdi  Important Questions for CBSE Class 12 Micro Economics Chapter 1 - Introduction to Micro Economics  Important Questions for CBSE Class 12 Macro Economics Chapter 1 - Introduction to Macro Economics  Maths Question Paper for CBSE Class 12 - 2016 Set 1 E  Maths Question Paper for CBSE Class 12 - 2016 Set 1 S  Maths Question Paper for CBSE Class 12 - 2016 Set 1 C  Maths Question Paper for CBSE Class 12 - 2016 Set 1 N  CBSE Class 12 Maths Question Paper 2020  Maths Question Paper for CBSE Class 12 - 2013  Chemistry Question Paper for CBSE Class 12 - 2016 Set 1 E  Chemistry Question Paper for CBSE Class 12 - 2016 Set 1 S  Chemistry Question Paper for CBSE Class 12 - 2016 Set 1 N  Chemistry Question Paper for CBSE Class 12 - 2016 Set 1 C  RS Aggarwal Class 12 Solutions Chapter-12 Indefinite Integral  RD Sharma Class 12 Solutions Chapter 1 - Relations (Ex 1.1) Exercise 1.1  NCERT Solutions for Class 12 Maths Chapter 1 Exercise 1.1 (Ex 1.1)  RD Sharma Class 12 Solutions Chapter 1 - Relations (Ex 1.2) Exercise 1.2  RD Sharma Class 12 Solutions Chapter 12 - Higher Order Derivatives (Ex 12.1) Exercise 12.1  NCERT Solutions for Class 12 Maths Chapter 1 Exercise 1.3 (Ex 1.3)  NCERT Solutions for Class 12 Maths Chapter 1 Exercise 1.4 (Ex 1.4)  NCERT Solutions for Class 12 Maths Chapter 12 Linear Programming (Ex 12.1) Exercise 12.1  NCERT Solutions for Class 12 Maths Chapter 1 Exercise 1.2 (Ex 1.2)  RD Sharma Class 7 Solutions Chapter 12 - Profit and Loss (Ex 12.1) Exercise 12.1  