
$\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx = } $ (for some arbitrary constant)
A. $\dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} - \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C$
B. $\dfrac{1}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} - \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C$
C. $\dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C$
D. $\dfrac{1}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C$
Answer
232.8k+ views
Hint: The given integral contains trigonometric terms in both the numerator and the denominator, so first convert the expression into a simpler expression using substitution, whose integral can be easily evaluated.
Complete step by step answer:
The given integral is $\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} $
Let $\sec x + \tan x = z$
Differentiating both sides with respect to $x$ , we see that :
$\sec x\tan x + {\sec ^2}xdx = dz$
$
\Rightarrow \sec x(\sec x + \tan x)dx = dz \\
\Rightarrow \sec xdx = \dfrac{{dz}}{z} \\
$
We know that according to a trigonometric property -
$
{\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow (\sec x - \tan x)(\sec x + \tan x) = 1 \\
\Rightarrow \sec x - \tan x = \dfrac{1}{z} \\
$
On adding the obtained expressions $\sec x + \tan x$ and $\sec x - \tan x$, we get :
$
\sec x + \tan x + \sec x - \tan x = z + \dfrac{1}{z} \\
\sec x = \dfrac{1}{2}(z + \dfrac{1}{z}) \\
$
Substituting the obtained values of $\sec xdx$ , $\sec x$ and $\sec x + \tan x$ in the given integral, we get :
$
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}\int {\dfrac{{{z^2} + 1}}{{{z^{\frac{{13}}{2}}}}}dz} \\
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}[\int {\dfrac{1}{{{z^{\frac{9}{2}}}}}dz + } \int {\dfrac{1}{{{z^{\frac{{13}}{2}}}}}dz} ] \\
$
Now, we will apply the formula of integration of ${x^n}$ , that is, $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $ . Thus, we get the integral of the above simplified expression as :
$
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}(\dfrac{{ - 2}}{{7{z^{\frac{7}{2}}}}} + \dfrac{{ - 2}}{{11{z^{\frac{{11}}{2}}}}}) + C \\
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{{ - 1}}{{{z^{\frac{7}{2}}}}}(\dfrac{1}{7} + \dfrac{1}{{11{z^2}}}) + C \\
$
Now, put the value $z = \sec x + \tan x$ in the above equation, we get :
$
\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} = \dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{7}{2}}}}}(\dfrac{1}{7} + \dfrac{1}{{11{{(\sec x + \tan x)}^2}}}) + C \\
\Rightarrow \int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} = \dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C \\
$
The correct option is option (C).
Additional information:
The integrals that contain multiple trigonometric functions are known as trigonometric integrals. (A discipline of mathematics that deals with certain angle functions and how to use them in computations is trigonometry. In trigonometry, there are six functions of an angle that are often utilized.)
Note:
In mathematics, an integral is a numerical number equal to the area under the graph of a function for some interval (definite integral) or a new function whose derivative is the original function (indefinite integral). While solving this kind of integral problems, select the part you are going to substitute such that the expression gets simpler and contains lesser number of terms and is easy to integrate. To solve trigonometric integrals, substitute the trigonometric function by some algebraic expression.
Complete step by step answer:
The given integral is $\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} $
Let $\sec x + \tan x = z$
Differentiating both sides with respect to $x$ , we see that :
$\sec x\tan x + {\sec ^2}xdx = dz$
$
\Rightarrow \sec x(\sec x + \tan x)dx = dz \\
\Rightarrow \sec xdx = \dfrac{{dz}}{z} \\
$
We know that according to a trigonometric property -
$
{\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow (\sec x - \tan x)(\sec x + \tan x) = 1 \\
\Rightarrow \sec x - \tan x = \dfrac{1}{z} \\
$
On adding the obtained expressions $\sec x + \tan x$ and $\sec x - \tan x$, we get :
$
\sec x + \tan x + \sec x - \tan x = z + \dfrac{1}{z} \\
\sec x = \dfrac{1}{2}(z + \dfrac{1}{z}) \\
$
Substituting the obtained values of $\sec xdx$ , $\sec x$ and $\sec x + \tan x$ in the given integral, we get :
$
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}\int {\dfrac{{{z^2} + 1}}{{{z^{\frac{{13}}{2}}}}}dz} \\
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}[\int {\dfrac{1}{{{z^{\frac{9}{2}}}}}dz + } \int {\dfrac{1}{{{z^{\frac{{13}}{2}}}}}dz} ] \\
$
Now, we will apply the formula of integration of ${x^n}$ , that is, $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C} $ . Thus, we get the integral of the above simplified expression as :
$
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{1}{2}(\dfrac{{ - 2}}{{7{z^{\frac{7}{2}}}}} + \dfrac{{ - 2}}{{11{z^{\frac{{11}}{2}}}}}) + C \\
\int {\dfrac{{\dfrac{1}{2}(z + \dfrac{1}{z})\dfrac{1}{z}dz}}{{{z^{\frac{9}{2}}}}}} = \dfrac{{ - 1}}{{{z^{\frac{7}{2}}}}}(\dfrac{1}{7} + \dfrac{1}{{11{z^2}}}) + C \\
$
Now, put the value $z = \sec x + \tan x$ in the above equation, we get :
$
\int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} = \dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{7}{2}}}}}(\dfrac{1}{7} + \dfrac{1}{{11{{(\sec x + \tan x)}^2}}}) + C \\
\Rightarrow \int {\dfrac{{{{\sec }^2}x}}{{{{(\sec x + \tan x)}^{\frac{9}{2}}}}}dx} = \dfrac{{ - 1}}{{{{(\sec x + \tan x)}^{\frac{{11}}{2}}}}}\{ \dfrac{1}{{11}} + \dfrac{1}{7}{(\sec x + \tan x)^2}\} + C \\
$
The correct option is option (C).
Additional information:
The integrals that contain multiple trigonometric functions are known as trigonometric integrals. (A discipline of mathematics that deals with certain angle functions and how to use them in computations is trigonometry. In trigonometry, there are six functions of an angle that are often utilized.)
Note:
In mathematics, an integral is a numerical number equal to the area under the graph of a function for some interval (definite integral) or a new function whose derivative is the original function (indefinite integral). While solving this kind of integral problems, select the part you are going to substitute such that the expression gets simpler and contains lesser number of terms and is easy to integrate. To solve trigonometric integrals, substitute the trigonometric function by some algebraic expression.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

