
In the circuit shown in figure, switch $S$ is closed at time $t = 0$ . The charge that passes through the battery in one-time constant is:

A) $\dfrac{{e{R^2}E}}{L}$
B) $E\left( {\dfrac{L}{R}} \right)$
C) $\dfrac{{EL}}{{e{R^2}}}$
D) $\dfrac{{eL}}{{ER}}$
Answer
523.1k+ views
Hint: An inductor and a resistance are connected in the circuit. Current flowing in the LR circuit is given as $i = {i_0}(1 - {e^{ - \dfrac{t}{\tau }}})$ . The maximum current is given as ${i_0} = \dfrac{E}{R}$ and time $\tau = \dfrac{L}{R}$ . Charge is given as $q = \int\limits_0^T {idt} $ . We need to put values of current and time constant and then integrate to get the value of charge passing through the battery.
Complete step by step solution:
We are given an inductor and a resistance which is connected in series to a battery. The connected switch $S$ is closed at time $t = 0$ . As soon as the switch is closed the circuit is complete and thus electric current flows in the circuit. As current is charge flowing per unit time, we can find the charge flowing through the battery if we can find the current.
The current flowing in a LR circuit is given as:
$i = {i_0}(1 - {e^{ - \dfrac{t}{\tau }}})$-------equation $1$
Here, $i$ is the current at any given time $t$
${i_0}$ is the maximum current given by ${i_0} = \dfrac{E}{R}$
$\tau $ is the time constant given as;
$\tau = \dfrac{L}{R}$-----equation $2$
As the battery is connected in the circuit this condition is known as growth of current.
We know that current can be given as:
$i = \dfrac{{dq}}{{dt}}$
Where $dq$ is the amount of charge flowing through time $dt$
$ \Rightarrow dq = idt$
We need to find this charge. We have the value of current, substituting the value of current from equation $1$ , we get
$ \Rightarrow dq = \left( {{i_0}(1 - {e^{ - \dfrac{t}{\tau }}})} \right)dt$
But ${i_0} = \dfrac{E}{R}$ $E$ is the voltage of the battery and $R$ is the resistance;
$ \Rightarrow dq = \left( {\dfrac{E}{R}(1 - {e^{ - \dfrac{t}{\tau }}})} \right)dt$
The charge at $t = 0$ will be zero. Let the charge be $q$ at some time $\tau $
Thus, integrating the above equation, we get
$ \Rightarrow \int\limits_0^q {dq} = \dfrac{E}{R}\int\limits_0^\tau {(1 - {e^{ - \dfrac{t}{\tau }}})dt} $
Integrating this, we get
$ \Rightarrow q = \dfrac{{EL}}{{e{R^2}}}$
as $\int {{e^{ - a}}} = - a{e^{ - a}}$
$ \Rightarrow q = \dfrac{E}{R}\left[ {\tau + \dfrac{\tau }{e} - \tau } \right]$(applying limits)
$ \Rightarrow q = \dfrac{E}{R} \times \dfrac{\tau }{e}$
equation $2$ we have $\tau = \dfrac{L}{R}$
$ \Rightarrow q = \dfrac{E}{R} \times \dfrac{L}{{Re}}$
$ \Rightarrow q = \dfrac{{EL}}{{e{R^2}}}$
Therefore, the charge that passes through the battery in one-time constant is $q = \dfrac{{EL}}{{e{R^2}}}$
Thus, option C is the correct option.
Note: As soon as the switch is closed charge starts to flow in the circuit. The inductor initially is at very high resistance but as energy is going into building up a magnetic field. Once the magnetic field is up and no longer changing, the inductor acts like a short circuit the time taken for the inductor to fully charge is known as time constant. Therefore, we have taken the upper limit of time as the value of time constant.
Complete step by step solution:
We are given an inductor and a resistance which is connected in series to a battery. The connected switch $S$ is closed at time $t = 0$ . As soon as the switch is closed the circuit is complete and thus electric current flows in the circuit. As current is charge flowing per unit time, we can find the charge flowing through the battery if we can find the current.
The current flowing in a LR circuit is given as:
$i = {i_0}(1 - {e^{ - \dfrac{t}{\tau }}})$-------equation $1$
Here, $i$ is the current at any given time $t$
${i_0}$ is the maximum current given by ${i_0} = \dfrac{E}{R}$
$\tau $ is the time constant given as;
$\tau = \dfrac{L}{R}$-----equation $2$
As the battery is connected in the circuit this condition is known as growth of current.
We know that current can be given as:
$i = \dfrac{{dq}}{{dt}}$
Where $dq$ is the amount of charge flowing through time $dt$
$ \Rightarrow dq = idt$
We need to find this charge. We have the value of current, substituting the value of current from equation $1$ , we get
$ \Rightarrow dq = \left( {{i_0}(1 - {e^{ - \dfrac{t}{\tau }}})} \right)dt$
But ${i_0} = \dfrac{E}{R}$ $E$ is the voltage of the battery and $R$ is the resistance;
$ \Rightarrow dq = \left( {\dfrac{E}{R}(1 - {e^{ - \dfrac{t}{\tau }}})} \right)dt$
The charge at $t = 0$ will be zero. Let the charge be $q$ at some time $\tau $
Thus, integrating the above equation, we get
$ \Rightarrow \int\limits_0^q {dq} = \dfrac{E}{R}\int\limits_0^\tau {(1 - {e^{ - \dfrac{t}{\tau }}})dt} $
Integrating this, we get
$ \Rightarrow q = \dfrac{{EL}}{{e{R^2}}}$
as $\int {{e^{ - a}}} = - a{e^{ - a}}$
$ \Rightarrow q = \dfrac{E}{R}\left[ {\tau + \dfrac{\tau }{e} - \tau } \right]$(applying limits)
$ \Rightarrow q = \dfrac{E}{R} \times \dfrac{\tau }{e}$
equation $2$ we have $\tau = \dfrac{L}{R}$
$ \Rightarrow q = \dfrac{E}{R} \times \dfrac{L}{{Re}}$
$ \Rightarrow q = \dfrac{{EL}}{{e{R^2}}}$
Therefore, the charge that passes through the battery in one-time constant is $q = \dfrac{{EL}}{{e{R^2}}}$
Thus, option C is the correct option.
Note: As soon as the switch is closed charge starts to flow in the circuit. The inductor initially is at very high resistance but as energy is going into building up a magnetic field. Once the magnetic field is up and no longer changing, the inductor acts like a short circuit the time taken for the inductor to fully charge is known as time constant. Therefore, we have taken the upper limit of time as the value of time constant.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

