
In interference pattern, using two coherent sources of light, the fringe width is
A) Directly proportional to wavelength.
B) Inversely proportional to square of the wavelength.
C) Inversely proportional to wavelength.
D) Directly proportional to square of the wavelength.
Answer
232.8k+ views
Hint: Interference is the superimposition of two waves which forms a resultant with amplitude of more, less or the same one. Interference produced with different waves will always either come from same source or will have nearly same frequency
Important Formulae
$\begin{gathered}
{\text{X = }}\dfrac{{\lambda {\text{D}}}}{d} \\
{\text{X = Fringe Width}} \\
{\text{D = distance between the source and the screen}} \\
\lambda {\text{ = wavelength of the light used}} \\
{\text{From above equation, we can clearly come into a conclusion that}} \\
{\text{X is directly proportional to }}\lambda \\
\end{gathered} $
Complete step by step solution
In interference, we know Fringe is the separation between two consecutive bright or dark fringe
So $\begin{gathered}
{{\text{y}}_{\text{n}}}{\text{ = }}\dfrac{{{{n\lambda D}}}}{{\text{d}}}{\text{ and }}{{\text{y}}_{n + 1}} = \dfrac{{(n - 1)}}{d}\lambda D \\
So {\text{ }}{{\text{y}}_{{n}}} - {\text{ }}{{\text{y}}_{n + 1}} = {\text{fringe width}} \\
\end{gathered} $
$\begin{gathered}
= \dfrac{{\lambda {\text{D}}}}{d} \\
\\
\end{gathered} $
Fringe width is given by
$\begin{gathered}
{\text{X = }}\dfrac{{\lambda {\text{D}}}}{d} \\
{\text{X = Fringe Width}} \\
{\text{D = distance between the source and the screen}} \\
\lambda {\text{ = wavelength of the light used}} \\
{\text{From above equation, we can clearly come into a conclusion that}} \\
{\text{X is directly proportional to }}\lambda \\
\end{gathered} $
Thus, option A is correct.
Additional Information
Interference occurs in all types of waves including it is not only limited to surface water waves, gravity waves and light waves.
Notes: If the crest of one wave meets the trough of another waves, then the amplitude of the resultant wave is the difference in the amplitude of the two waves.
Important Formulae
$\begin{gathered}
{\text{X = }}\dfrac{{\lambda {\text{D}}}}{d} \\
{\text{X = Fringe Width}} \\
{\text{D = distance between the source and the screen}} \\
\lambda {\text{ = wavelength of the light used}} \\
{\text{From above equation, we can clearly come into a conclusion that}} \\
{\text{X is directly proportional to }}\lambda \\
\end{gathered} $
Complete step by step solution
In interference, we know Fringe is the separation between two consecutive bright or dark fringe
So $\begin{gathered}
{{\text{y}}_{\text{n}}}{\text{ = }}\dfrac{{{{n\lambda D}}}}{{\text{d}}}{\text{ and }}{{\text{y}}_{n + 1}} = \dfrac{{(n - 1)}}{d}\lambda D \\
So {\text{ }}{{\text{y}}_{{n}}} - {\text{ }}{{\text{y}}_{n + 1}} = {\text{fringe width}} \\
\end{gathered} $
$\begin{gathered}
= \dfrac{{\lambda {\text{D}}}}{d} \\
\\
\end{gathered} $
Fringe width is given by
$\begin{gathered}
{\text{X = }}\dfrac{{\lambda {\text{D}}}}{d} \\
{\text{X = Fringe Width}} \\
{\text{D = distance between the source and the screen}} \\
\lambda {\text{ = wavelength of the light used}} \\
{\text{From above equation, we can clearly come into a conclusion that}} \\
{\text{X is directly proportional to }}\lambda \\
\end{gathered} $
Thus, option A is correct.
Additional Information
Interference occurs in all types of waves including it is not only limited to surface water waves, gravity waves and light waves.
Notes: If the crest of one wave meets the trough of another waves, then the amplitude of the resultant wave is the difference in the amplitude of the two waves.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

