
In \[\Delta ABC\], if a = 16, b = 24, and c = 20, then find \[\cos \dfrac{B}{2}\].
A. \[\dfrac{3}{4}\]
B. \[\dfrac{1}{4}\]
C. \[\dfrac{1}{2}\]
D. \[\dfrac{1}{3}\]
Answer
233.1k+ views
Hint: First we will find the semi perimeter of the \[\Delta ABC\]. Then we apply the half angle cosine rule to calculate the value of \[\cos \dfrac{B}{2}\].
Formula used:
The semi perimeter of a triangle is \[s = \dfrac{{a + b + c}}{2}\], where a, b, c are length of sides.
The half angle cosine formula is \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \]
Complete step by step solution:
Given that if a = 16, b = 24, and c = 20.
Now we will plug the value of a, b, c in \[s = \dfrac{{a + b + c}}{2}\] to calculate the semi perimeter.
\[s = \dfrac{{16 + 24 + 20}}{2}\]
\[ \Rightarrow s = \dfrac{{60}}{2}\]
\[ \Rightarrow s = 30\]
The half angle formula for cosine is \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \].
Substitute the value of s, a, b, c:
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{30\left( {30 - 24} \right)}}{{20 \cdot 16}}} \]
\[ \Rightarrow \cos \dfrac{B}{2} = \sqrt {\dfrac{{30 \cdot 6}}{{20 \cdot 16}}} \]
\[ \Rightarrow \cos \dfrac{B}{2} = \sqrt {\dfrac{{3 \cdot 3}}{{16}}} \]
\[ \Rightarrow \cos \dfrac{B}{2} = \dfrac{3}{4}\]
Hence option A is the correct option.
Additional information:
We can derive the half angle formula by using trigonometry identities. We know cosine law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[ \Rightarrow \cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
Now applying the trigonometry identity \[2{\cos ^2}\dfrac{A}{2} - 1 = \cos A\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} - 1 = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + 1\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{{b^2} + {c^2} - {a^2} + 2bc}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{{{\left( {b + c} \right)}^2} - {a^2}}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{\left( {b + c + a} \right)\left( {b + c - a} \right)}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{\left( {b + c + a} \right)\left( {b + c + a - 2a} \right)}}{{2bc}}\]
We know that \[2s = a + b + c\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{2s\left( {2s - 2a} \right)}}{{2bc}}\]
\[ \Rightarrow {\cos ^2}\dfrac{A}{2} = \dfrac{{s\left( {s - a} \right)}}{{bc}}\]
Note: Students are often confused with semi perimeter and perimeter. The half of the perimeter is known as semi perimeter and semi perimeter is denoted by s. Perimeter is the sum of all sides.
Formula used:
The semi perimeter of a triangle is \[s = \dfrac{{a + b + c}}{2}\], where a, b, c are length of sides.
The half angle cosine formula is \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \]
Complete step by step solution:
Given that if a = 16, b = 24, and c = 20.
Now we will plug the value of a, b, c in \[s = \dfrac{{a + b + c}}{2}\] to calculate the semi perimeter.
\[s = \dfrac{{16 + 24 + 20}}{2}\]
\[ \Rightarrow s = \dfrac{{60}}{2}\]
\[ \Rightarrow s = 30\]
The half angle formula for cosine is \[\cos \dfrac{B}{2} = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ca}}} \].
Substitute the value of s, a, b, c:
\[\cos \dfrac{B}{2} = \sqrt {\dfrac{{30\left( {30 - 24} \right)}}{{20 \cdot 16}}} \]
\[ \Rightarrow \cos \dfrac{B}{2} = \sqrt {\dfrac{{30 \cdot 6}}{{20 \cdot 16}}} \]
\[ \Rightarrow \cos \dfrac{B}{2} = \sqrt {\dfrac{{3 \cdot 3}}{{16}}} \]
\[ \Rightarrow \cos \dfrac{B}{2} = \dfrac{3}{4}\]
Hence option A is the correct option.
Additional information:
We can derive the half angle formula by using trigonometry identities. We know cosine law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[ \Rightarrow \cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
Now applying the trigonometry identity \[2{\cos ^2}\dfrac{A}{2} - 1 = \cos A\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} - 1 = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + 1\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{{b^2} + {c^2} - {a^2} + 2bc}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{{{\left( {b + c} \right)}^2} - {a^2}}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{\left( {b + c + a} \right)\left( {b + c - a} \right)}}{{2bc}}\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{\left( {b + c + a} \right)\left( {b + c + a - 2a} \right)}}{{2bc}}\]
We know that \[2s = a + b + c\]
\[ \Rightarrow 2{\cos ^2}\dfrac{A}{2} = \dfrac{{2s\left( {2s - 2a} \right)}}{{2bc}}\]
\[ \Rightarrow {\cos ^2}\dfrac{A}{2} = \dfrac{{s\left( {s - a} \right)}}{{bc}}\]
Note: Students are often confused with semi perimeter and perimeter. The half of the perimeter is known as semi perimeter and semi perimeter is denoted by s. Perimeter is the sum of all sides.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

