
In an interference pattern produced by two identical slits, the intensity at the site of the central maximum is \[I\]. The intensity at the same spot when either of the two sites is closed is \[{{I}_{0}}\]. We must have:
A) \[I = {{I}_{0}}\]
B) \[I = 2{{I}_{0}}\]
C) \[I = 4{{I}_{0}}\]
D) \[I\] and \[{{I}_{0}}\] are not related
Answer
148.5k+ views
Hint: In physics, interference is a phenomenon in which two waves superpose to form a resultant wave of greater, lower, or the same amplitude. We have been given the intensities at the site of central maxima for interference pattern from two slits and interference pattern from one slit. The point to be kept in mind while solving this question is that the intensity at the central maxima has the maximum intensity in the entire diffraction pattern.
Formula Used:
\[{{\operatorname{I}}_{max}}={{\left( \sqrt{{{I}_{1}}}+\sqrt{{{I}_{2}}} \right)}^{2}}\]
Complete step by step solution:
Let us consider the intensity of the light from the two slits to be \[{{I}_{1}}\] and \[{{I}_{2}}\] respectively. Since we have been told that the slits are identical, we can infer that the intensity of the light through these slits will also be the same. Hence, we can say that \[{{I}_{1}}={{I}_{2}}=I'\text{ }(let)\]
The intensity of light at central maxima or the maximum intensity is given as \[{{\operatorname{I}}_{max}}={{\left( \sqrt{{{I}_{1}}}+\sqrt{{{I}_{2}}} \right)}^{2}}\]
Substituting the values of the intensities from the two slits, we get,
\[\begin{align}
& {{\operatorname{I}}_{max}}={{\left( \sqrt{I'}+\sqrt{I'} \right)}^{2}} \\
& \Rightarrow {{\operatorname{I}}_{max}}={{\left( 2\sqrt{I'} \right)}^{2}}=4I' \\
\end{align}\]
This is the intensity at the central maxima due to interference from both slits. But we have been given this value as \[I\], hence we can say that \[I = I'\]
Now, if one of the slits is closed, the intensity of light through that slit will reduce to zero.
The new maximum intensity will thus be \[{{\operatorname{I}}_{max}}={{\left( \sqrt{{{I}_{1}}}+\sqrt{0} \right)}^{2}}\]
Substituting the value of intensity of light through the slit, we get
\[\begin{align}
& {{\operatorname{I}}_{max}}={{\left( \sqrt{I'}+\sqrt{0} \right)}^{2}} \\
& \Rightarrow {{\operatorname{I}}_{max}}=I' \\
\end{align}\]
But this maximum value has already been given to us as \[{{I}_{0}}\] .
Hence we can say that \[{{I}_{0}}=I'\].
Now we have a relation of both \[{{I}_{0}}\] and \[I\] with \[I'\] as \[{{I}_{0}}=I'\] and \[I = 4I'\] respectively.
We can now say that \[I = 4{{I}_{0}}\]
Therefore, option (C) is the correct answer.
Note: We have to infer some things from the question on our own. For example, we had been only told that the slits are identical, we inferred on our own that since the slits are identical, they’ll allow equal intensities of light to escape through. If we had not done that, we would have ended up with two equations and three variables and we would never have reached our answer.
Formula Used:
\[{{\operatorname{I}}_{max}}={{\left( \sqrt{{{I}_{1}}}+\sqrt{{{I}_{2}}} \right)}^{2}}\]
Complete step by step solution:
Let us consider the intensity of the light from the two slits to be \[{{I}_{1}}\] and \[{{I}_{2}}\] respectively. Since we have been told that the slits are identical, we can infer that the intensity of the light through these slits will also be the same. Hence, we can say that \[{{I}_{1}}={{I}_{2}}=I'\text{ }(let)\]
The intensity of light at central maxima or the maximum intensity is given as \[{{\operatorname{I}}_{max}}={{\left( \sqrt{{{I}_{1}}}+\sqrt{{{I}_{2}}} \right)}^{2}}\]
Substituting the values of the intensities from the two slits, we get,
\[\begin{align}
& {{\operatorname{I}}_{max}}={{\left( \sqrt{I'}+\sqrt{I'} \right)}^{2}} \\
& \Rightarrow {{\operatorname{I}}_{max}}={{\left( 2\sqrt{I'} \right)}^{2}}=4I' \\
\end{align}\]
This is the intensity at the central maxima due to interference from both slits. But we have been given this value as \[I\], hence we can say that \[I = I'\]
Now, if one of the slits is closed, the intensity of light through that slit will reduce to zero.
The new maximum intensity will thus be \[{{\operatorname{I}}_{max}}={{\left( \sqrt{{{I}_{1}}}+\sqrt{0} \right)}^{2}}\]
Substituting the value of intensity of light through the slit, we get
\[\begin{align}
& {{\operatorname{I}}_{max}}={{\left( \sqrt{I'}+\sqrt{0} \right)}^{2}} \\
& \Rightarrow {{\operatorname{I}}_{max}}=I' \\
\end{align}\]
But this maximum value has already been given to us as \[{{I}_{0}}\] .
Hence we can say that \[{{I}_{0}}=I'\].
Now we have a relation of both \[{{I}_{0}}\] and \[I\] with \[I'\] as \[{{I}_{0}}=I'\] and \[I = 4I'\] respectively.
We can now say that \[I = 4{{I}_{0}}\]
Therefore, option (C) is the correct answer.
Note: We have to infer some things from the question on our own. For example, we had been only told that the slits are identical, we inferred on our own that since the slits are identical, they’ll allow equal intensities of light to escape through. If we had not done that, we would have ended up with two equations and three variables and we would never have reached our answer.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Uniform Acceleration

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electrical Field of Charged Spherical Shell - JEE

Charging and Discharging of Capacitor

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
