
In a box of 10 electric bulbs, two are defective. Two bulbs are selected at random one after the other from the box. What is the probability that both the bulbs are without defects?
A. \[\dfrac{9}{{25}}\]
B. \[\dfrac{{16}}{{25}}\]
C. \[\dfrac{4}{5}\]
D. \[\dfrac{8}{{25}}\]
Answer
233.1k+ views
Hint:
First we find the probability of getting a good bulb and then we will calculate the probability of getting a defective bulb. After that, we will use the binomial distribution to calculate the required probability.
Formula Used:
\[{\rm{Probability = }}\dfrac{{{\rm{The}}\,{\rm{number}}\,{\rm{of}}\,{\rm{favorable}}\,{\rm{outcomes}}}}{{{\rm{The}}\,{\rm{number}}\,{\rm{of}}\,{\rm{total}}\,{\rm{outcomes}}}}\]
Binomial distribution:
\[P\left( {n,r} \right){ = ^n}{C_r}{\left( p \right)^r}{q^{n - r}}\]
\[n\]: Total number of objects selected
\[r\]: Number of chances of success
\[p\]: Probability of success
\[q\]: Probability of failure
Complete step-by-step answer:
Given that, there are 10 bulbs in a box, two are defective bulbs.
Number of good bulbs = \[10 - 2 = 8\]
Now apply the probability formula to find the probability of selecting a good bulb:
Number of favorable outcomes = 8
Total number of outcomes = 10
The probability of selecting a good bulb is \[p = \dfrac{8}{{10}}\].
\[ \Rightarrow p = \dfrac{4}{5}\]
Now apply the probability formula to find the probability of selecting a defective bulb:
Number of favorable outcomes = 2
Total number of outcomes = 10
The probability of selecting a defective bulb is \[q = \dfrac{2}{{10}}\].
\[ \Rightarrow q = \dfrac{1}{5}\]
Applying the binomial distribution to calculate the probability that both the bulbs are without defects.
The number of bulbs that pick from the box is 2.
\[P\left( {2,2} \right){ = ^2}{C_2}{\left( {\dfrac{4}{5}} \right)^2}{\left( {\dfrac{1}{5}} \right)^{2 - 2}}\]
\[ \Rightarrow P\left( {2,2} \right) = 1{\left( {\dfrac{4}{5}} \right)^2}{\left( {\dfrac{1}{5}} \right)^0}\] Since \[^n{C_n} = 1\]
\[ \Rightarrow P\left( {2,2} \right) = \dfrac{{16}}{{25}}\]
Hence option B is the correct option.
Note:
Students are often confused in binomial distribution formulas. They do not understand which is the correct formula out of \[P\left( {n,r} \right){ = ^n}{C_r}{\left( p \right)^r}{q^{n - r}}\] or \[P\left( {n,r} \right){ = ^n}{C_r}{\left( p \right)^{n - r}}{q^r}\]. The correct formula is \[P\left( {n,r} \right){ = ^n}{C_r}{\left( p \right)^r}{q^{n - r}}\].
First we find the probability of getting a good bulb and then we will calculate the probability of getting a defective bulb. After that, we will use the binomial distribution to calculate the required probability.
Formula Used:
\[{\rm{Probability = }}\dfrac{{{\rm{The}}\,{\rm{number}}\,{\rm{of}}\,{\rm{favorable}}\,{\rm{outcomes}}}}{{{\rm{The}}\,{\rm{number}}\,{\rm{of}}\,{\rm{total}}\,{\rm{outcomes}}}}\]
Binomial distribution:
\[P\left( {n,r} \right){ = ^n}{C_r}{\left( p \right)^r}{q^{n - r}}\]
\[n\]: Total number of objects selected
\[r\]: Number of chances of success
\[p\]: Probability of success
\[q\]: Probability of failure
Complete step-by-step answer:
Given that, there are 10 bulbs in a box, two are defective bulbs.
Number of good bulbs = \[10 - 2 = 8\]
Now apply the probability formula to find the probability of selecting a good bulb:
Number of favorable outcomes = 8
Total number of outcomes = 10
The probability of selecting a good bulb is \[p = \dfrac{8}{{10}}\].
\[ \Rightarrow p = \dfrac{4}{5}\]
Now apply the probability formula to find the probability of selecting a defective bulb:
Number of favorable outcomes = 2
Total number of outcomes = 10
The probability of selecting a defective bulb is \[q = \dfrac{2}{{10}}\].
\[ \Rightarrow q = \dfrac{1}{5}\]
Applying the binomial distribution to calculate the probability that both the bulbs are without defects.
The number of bulbs that pick from the box is 2.
\[P\left( {2,2} \right){ = ^2}{C_2}{\left( {\dfrac{4}{5}} \right)^2}{\left( {\dfrac{1}{5}} \right)^{2 - 2}}\]
\[ \Rightarrow P\left( {2,2} \right) = 1{\left( {\dfrac{4}{5}} \right)^2}{\left( {\dfrac{1}{5}} \right)^0}\] Since \[^n{C_n} = 1\]
\[ \Rightarrow P\left( {2,2} \right) = \dfrac{{16}}{{25}}\]
Hence option B is the correct option.
Note:
Students are often confused in binomial distribution formulas. They do not understand which is the correct formula out of \[P\left( {n,r} \right){ = ^n}{C_r}{\left( p \right)^r}{q^{n - r}}\] or \[P\left( {n,r} \right){ = ^n}{C_r}{\left( p \right)^{n - r}}{q^r}\]. The correct formula is \[P\left( {n,r} \right){ = ^n}{C_r}{\left( p \right)^r}{q^{n - r}}\].
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

